
Stream-monitoring with BlockMon: convergence of
network measurements and data analytics platforms∗

Davide Simoncelli
University of Brescia – CNIT

netcelli.tux@gmail.com

Maurizio Dusi
NEC Laboratories Europe
maurizio.dusi@neclab.eu

Francesco Gringoli
University of Brescia – CNIT

francesco.gringoli@ing.unibs.it

Saverio Niccolini
NEC Laboratories Europe

saverio.niccolini@neclab.eu

ABSTRACT
Recent work in network measurements focuses on scaling the
performance of monitoring platforms to 10Gb/s and beyond.
Concurrently, IT community focuses on scaling the analysis
of big-data over a cluster of nodes. So far, combinations
of these approaches have targeted flexibility and usability
over real-timeliness of results and efficient allocation of re-
sources. In this paper we show how to meet both objectives
with BlockMon, a network monitoring platform originally
designed to work on a single node, which we extended to
run distributed stream-data analytics tasks. We compare
its performance against Storm and Apache S4, the state-of-
the-art open-source stream-processing platforms, by imple-
menting a phone call anomaly detection system and a Twit-
ter trending algorithm: our enhanced BlockMon has a gain
in performance of over 2.5x and 23x, respectively. Given the
different nature of those applications and the performance
of BlockMon as single-node network monitor [1], we expect
our results to hold for a broad range of applications, making
distributed BlockMon a good candidate for the convergence
of network-measurement and IT-analysis platforms.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications

General Terms
Performance, Measurement, Experimentation

Keywords
Performance analysis, data analysis, distributed computing

1. INTRODUCTION
To cope with the growth of data exchanged over the Inter-

net, the network measurement community has been focusing
on scaling up capture and real-time processing of packets to
10Gb/s and beyond: platforms like CoMo [2] have emerged,
as well as high-performance packet-capturing mechanisms
like Netmap, PFQ [3]. At the same time, IT community has
been designing platforms for scaling the analysis of big data
over clusters of general-purpose machines. However, the
proposed frameworks are mostly built on the MapReduce

∗The research leading to these results has received funding
from the European Union under the FP7 Grant Agreement
n. 318627 (Integrated Project ”mPlane”)

logic [4], which is oriented to the off-line processing of (batches
of) data [5, 6, 7] previously stored on a distributed filesys-
tem like HDFS. Due to this design choice, combination of
high-performance network probes and off-line data-analysis
frameworks is still a challenging target: the “store-and-analyze”
paradigm has dominated, neglecting performance and real-
timeliness of results for scale out and flexibility.

To overcome this issue, we apply a stream-processing par-
adigm to data monitoring. According to this model, an ap-
plication is seen as a network that processes, routes or splits
data across a topology of computing nodes for speeding up
the analysis and facing failures. Indeed, the application pro-
cesses data as it is produced, never stops and does not need
to store any (intermediate) result. Moreover, this model al-
lows to run algorithms which have shown to poorly fit into
a map-reduce logic [7], e.g., algorithms where the reduce
tasks cannot make use of the combiner at the map tasks,
thus causing a large overhead in memory, network and disk.

In this context two new frameworks have recently emerged
for the analysis of unbound streams of data: Storm [8]
and Apache S4 [9] target scalability and high availability of
the computing topology together with flexibility, by provid-
ing multi-language support and automatic allocation of re-
sources (cores and nodes) to tasks. Although this flexibility
may reduce the development time, we have experienced that
it affects pure performance or, at worst, can leave nodes un-
derutilized: as a consequence, to increase performance more
nodes have to be added, thus raising the operational cost.

To investigate what are the capabilities of the current data-
analytics platforms in processing unbound stream of data,
in this paper we analyze the performance we achieve when
running applications on the two stream-processing platforms
Apache S4 and Storm, and on BlockMon [1], a platform orig-
inally designed for running packet processing operations on
a single multi-core node, which we extend to execute appli-
cations which are distributed across machines. To this end,
we implement on all platforms two stream-monitoring ap-
plications: VoIPSTREAM [10], a phone anomaly detection
system, and Twitter trending, a system that monitors top-
ics discussed by Twitter users over time. Our results point
out some pitfalls in the existing platforms, which are not
due to the use of mechanisms for high availability, and show
that both applications perform best on BlockMon: for in-
stance, to achieve the best processing rate of VoIPSTREAM
on Storm, BlockMon needs only half of the machines re-
quired by Storm. We believe that our results, together with
the performance of single-node BlockMon when functioning

ACM SIGCOMM Computer Communication Review 30 Volume 43, Number 2, April 2013

as network-measurement platform [1], qualifies our enhanced
BlockMon as a good candidate for the convergence of dis-
tributed network-measurement and IT-analysis platforms.

The main contributions of this paper are: (i) extending
BlockMon to run distributed applications; (ii) comparing
three open-source stream-processing platforms; (iii) evaluat-
ing their performance with stream-monitoring applications.

The rest of this paper is organized as follows. In Section 2
we describe BlockMon, Storm and Apache S4. In Section 3
we detail the applications we implemented over the three
platforms. Section 4 and Section 5 show our testbed and
discuss the results of our performance tests. In Section 6 we
report the related work. Section 7 concludes the paper.

2. STREAM-PROCESSING PLATFORMS
Here we provide an overview of the three stream-processing

systems readily available to the best of our knowledge: our
enhanced BlockMon, Storm and Apache S4.

2.1 BlockMon
BlockMon is a modular system developed within the EU

FP7 project DEMONS [11], for flexible, high-performance
traffic monitoring and analysis, implemented in C++11 and
available open-source under the BSD license [12]. In its orig-
inal shape, users can run on a single computer a composition
of processing blocks which exchange messages through their
gates: users can develop efficient monitoring applications by
interconnecting blocks that capture traffic from high-speed
NIC with blocks that run algorithms for packet analysis.
BlockMon allows also to add, update and remove blocks
from a running composition without the need of stopping it.

In the BlockMon architecture, blocks implement at least
two methods: configure, which sets configuration parame-
ters passed via XML; and receive msg which receives data
(messages). A block can use the send out method to en-
queue messages on the output gates. Blocks that gener-
ate messages (e.g., packet capture threads) may use the
do async method to perform high-frequency non-periodic
asynchronous work. Blocks are executed either via direct
invocation, where messages are passed via method call; or
indirect invocation, where messages are passed via a lock-
free rotating queue [3]. When invoked directly, the down-
stream block runs within the thread of the upstream one;
otherwise it runs in a separate thread. Users set the block
invocation via the XML file.

Finally BlockMon schedules work in thread pools: each
block is assigned to a pool via the XML, and pools can
be pinned to specific cores. This model allows flexibility in
terms of which block is executed on which CPU core.

2.1.1 BlockMon for distributed stream-processing
We extend BlockMon with interfaces for connecting blocks

istantiated on different machines allowing distributed com-
positions to span over a network of nodes. The improve-
ment with respect to the standard BlockMon architecture is
twofold: first, it enables a fine-grained allocation of tasks on
specific nodes (e.g., capturing-oriented nodes send data to
processing-oriented nodes) by simply passing nodes’ IP ad-
dresses via the XML description of the composition; second
it opens for scalability, as a distributed application can take
advantage of an heterogeneous set of nodes within a cluster.

A distributed application requires users to implement a se-
rialize method for exporting data from a block of a node, and

a build same method for importing data on a block located
on another node. Exporters send messages to importers us-
ing TCP as transport protocol, with the IP address and
port of the destination specified in the XML file. Importer
blocks handle incoming data: the types of message to expect
and the input port are specified in the XML file. At the cur-
rent state, we assume i) sessions established between a given
exporter-importer pair are persistent; and ii) neither appli-
cation (message) level acknowledgment nor any flow control
technique is implemented, since TCP supplies for them na-
tively and sessions are persistent. We plan to address fail
safety, with reliability and high availability, in future work.
We release improved BlockMon to the public [12].

2.2 Storm
A distributed application on Storm is called topology and

it is composed of interconnections of spouts and bolts. Spouts
read data from external sources (e.g., files or live streams)
through the nextTuple method; bolts implement an execute
method to process incoming data. Spouts and bolts send
data out by means of an emit method. Data are exchanged
in form of tuples through ZMQ [13] sockets, which handle
the transmission of data locally or remotely on top of TCP.

Storm relies on Nimbus [14] for distributing code around
the cluster and assigning tasks to machines. Users have
no control on how resources are allocated within the clus-
ter; they only set, for a given component, the number of
instances to create, each of them running in a separated
thread. Within a machine, workers and executors handle
the execution of the elements for a given topology.

Storm runs on Java Virtual Machine, is written in Clojure
and Java and supports multi-language programmability. We
used the stable release of the software v0.8 1, available under
the EPL license [8].

2.3 Apache S4
An Apache S4 application is made of processing elements

that exchange events, i.e, messages holding (key, value) pairs.
Every element processes only events with the same value of
the key, through the onEvent method, and a new element
is spawned for every new key. An external adapter converts
data into Apache S4 events and injects them into the cluster
through the put method: elements then exchange events on
top of TCP sessions (UDP is supported as well). A task
periodically deletes elements that have not received events
within a time interval: though this prevents a machine from
running out of resources, it causes to lose the state associ-
ated to the deleted elements.

Given a node, Apache S4 allows to allocate only one thread
per element; furthermore, a single thread de-serializes data
from the network into events and dispatches them to ele-
ments: this approach creates a serial point within the node
in the Apache S4 architecture. The (de)queuing of events
is based on blocking calls. Users can launch more processes
within the same physical machine to increase the scalability
of their application, at the expense of using more resources.

Apache S4 is written in Java. We used its latest available
release (v0.5) at the time of the analysis, available under the
Open Source Apache 2.0 license [15].

1We did not use the latest version (v0.8.1) as we verified that
its wait strategy mechanism severely affects performance.

ACM SIGCOMM Computer Communication Review 31 Volume 43, Number 2, April 2013

3. STREAM-MONITORING APPLICATIONS
Monitoring applications are built upon two basic elements:

probes, which are responsible for getting data, and aggrega-
tion points, which correlate the data from the probes.

The number of probes and aggregators within an applica-
tion depends on the application itself and on the topology of
the network where it is deployed. However, they all generate
by combining the following two basic configurations:

1. multiple probes and one aggregation point: it covers
the case where the aggregation point can keep up with
the amount of data being received;

2. one probe and multiple aggregation points: it covers
the case where the tasks on the aggregation point are
so computational demanding that require the applica-
tion to parallelize them to process data on-the-fly.

We implemented an application for each of the two sce-
narios above on the three platforms. In the former case,
we focus on how such platforms handle data transfer over
the topology. In the latter case, we investigate how they
help speed up the execution of applications that need high-
computational power. As a matter of fact, multiple probes
and multiple aggregation points might concur to form any
service-monitoring application: by assessing how the dis-
tributed streaming platforms perform in each separated sce-
nario, we aim at gaining insight on how such platforms per-
form in a broad range of applications.

The following of this section describes the design of the
two applications. As several designs are indeed possible, to
carry out a fair comparison we opted for designs that allowed
to run each task on a dedicated machine, exploiting the same
number of nodes, tasks and threads on all the platforms;
moreover, machines were connected with links of the same
capacity. This way, we prevent Apache S4 from assigning
multiple high-computational tasks to the same machine, as
the platform itself lacks of mechanisms to control it.

3.1 Twitter trending
The Twitter trending application extracts hashtags from

Twitter tweets, and keeps a count of how many times people
cite them. This application, that is the default use-case for
Storm and Apache S4, aims at monitoring and ranking on-
the-fly topics discussed by Twitter users over time.

Twitter data is provided by companies such as GNIP [16],
which sell and send tweets to customers’ probes as a collec-
tion of data in the JSON format. To count hashtags, first a
parser has to extract them from within the JSON records.

The JSON parsing is the most-computational demand-
ing operation within the application and a single aggrega-
tion point (Hashtag Counter) can cope with several sources:
a quick analysis revealed that approximately only 8% of
tweets contains hashtags (i.e., they are passed to the Hashtag
Counter), which in turn account for 0.7% bytes on average
within a single JSON data record. As JSON parser, we used
jsmn and jackson for the C++ and Java implementation, re-
spectively: a test revealed that the two JSON parsers, when
used standalone, exhibit the same performance.

As a consequence, we opted for a design with multiple
parsers (Hashtag Finder), one per each Tweet Source, and
a single Hashtag Counter as reported in Figure 1: each ele-
ment is a task running on a dedicated machine of the cluster.

Hashtag
Counter

Hashtag
Finder

probes aggregation point

Hashtag
Finder

Hashtag
Finder

Tweet
Source

Tweet
Source

Tweet
Source

Figure 1: Twitter trending: design. Probes parse tweets and
send the hashtags to a central counter.

CDR Cloner

CDR Cloner

CDR
Source &

Dispatcher

probe aggregation points

Telemarketer
Detector

Telemarketer
Detector

Telemarketer
Detector

Figure 2: VoIPSTREAM: design. Probes extract from
CDRs features for telemarketer detectors. Cloners ensure
that CDRs from given users go to the same detector.

3.2 VoIPSTREAM
VoIPSTREAM is a phone anomaly detection application

which has proven to be an effective method for detecting
potential telemarketers in real-time while protecting the pri-
vacy of normal (i.e., non-telemarketing) users [10].

VoIPSTREAM takes a continuous stream of Call Data
Records (CDR) as input, and associates a score to each user
based on the calls that such user makes or receives, their
duration and response code. Scores are computed over a
configurable sliding time-window interval, and are continu-
osly updated for every new call through the use of time-
decaying Bloom filters [10]: a threshold-based algorithm
states if the user is acting like a telemarketer within a given
time-window. As VoIPSTREAM emits a score for every new
call, it is an example of applications that poorly fit into a
map-reduce logic, due to the lack of a data-reduction stage.

Figure 2 outlines our implementation of distributed VoIP-
STREAM. As here the bottleneck is the computational power
of the Bloom filters, we distributed the dataflow over mul-
tiple telemarketer detectors. We implemented Bloom filters
as native library, and wrote a binding for the Java imple-
mentation, so that VoIPSTREAM makes use of the same
library on all platforms. As the algorithm must dispatch
CDRs based both on the caller and on the callee, we im-
plemented cloners within our application, which replicate
the CDR in case the hash of the source and the hash of
the destination differ, i.e., in case they are sent to different
telemarketer detectors.

4. EXPERIMENTAL ANALYSIS
This section evaluates the performance of BlockMon, Storm

and Apache S4 when executing distributed applications for
(i) anomaly detection and (ii) trend analysis. Given the
target we assume no failure during the experiments and we
focus on scalability and costs in terms of CPU and memory
usage, leaving as future work the analysis of node failure
(fault tolerance) and data loss (reliability).

For every experiment, we assigned only one task per ma-
chine, and run the controller of the platform under test on a

ACM SIGCOMM Computer Communication Review 32 Volume 43, Number 2, April 2013

1 2 3 4 5 6
102

103

104

105

#Hashtag finders

Pr
oc

es
se

d
ha

sh
ta

gs
 p

er
 s

ec
on

d

BlockMon
Storm
Apache S4

23.5x 34.2x

Theoretical

Figure 3: Twitter trending: scalability (y-axis is in log scale).

1 2 3 4 5 6
0

500

1000

1500

2000

#Hashtag finders

Pe
rc

en
ta

ge
 o

f C
PU

 u
sa

ge

0

5

10

15

20

25

30

35

M
em

or
y

(G
B)

BlockMon
Storm
Apache S4

Figure 4: Twitter trending: total CPU (solid line) and mem-
ory (dotted line) usage.

dedicated machine, to avoid the load introduced by the con-
troller to affect our measurements. Moreover, we discarded
the start-up time of the platforms from our measurements.

4.1 Testbed and Datasets
Our testbed is composed of 14 commodity machines, each

one hosting two AMD Opteron(tm) Processors 246 (single
core) and 4GB RAM. A 16-port switch connects the 1GbE
interfaces of all machines. We estimate the value of each
machine to be around $1000 on today’s market.

For the Twitter trending application, we considered a data-
set composed of around 20 millions of tweets, in the JSON
format as provided by GNIP.

As for VoIPSTREAM, we used a dataset composed of few
tens of million of anonymized Call Detail Records (CDR)
collected over a period of several consecutive weeks, thanks
to the collaboration of a small European telecom operator.

4.2 Performance tests
Figure 3 shows the performance of Twitter trending as

the number of the hashtag finders (HF) increases. On all
the platforms, the application scales linearly, with a gain in
performance of 23.5x (34.2x) when we use BlockMon com-
pared to Storm (Apache S4). Note that this scaling behavior
is expected: as by design we increase the number of both
tweet sources and HFs in the topology (see Figure 1), the
rate of processed hashtags must increase linearly as long as
network capacity towards the hashtag counter is not a bot-
tleneck. In the figure, we report the theoretical behavior for
each platform as a dashed black line. Figure 4 shows the to-
tal cost of memory and CPU required by the three platforms
to run Twitter trending. As all machines in our testbed are
identical, we computed the overall memory and CPU usage

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

#Telemarketer Detectors

Pr
oc

es
se

d
C

D
R

 (K
/s

)

2.5x 11.2x

BlockMon − 2 cloners
Storm − 2 cloners
Apache S4 − 2 cloners
BlockMon − 1 cloner
Storm − 1 cloner
Apache S4 − 1 cloner
theoretical

Figure 5: VoIPSTREAM: scalability.

2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

#Telemarketer Detectors

pe
rc

en
ta

ge
 o

f C
PU

 u
sa

ge

0

5

10

15

20

25

30

35

m
em

or
y

(G
B)

BlockMon − 2 cloners
Storm − 2 cloners
Apache S4 − 2 cloners

Figure 6: VoIPSTREAM: total CPU (solid line) and mem-
ory (dotted line) usage.

as the sum of the resources used on each machine. The CPU
load of the hashtag counter is even in the worst case (with
six HFs on Storm) always below 4%, thus suggesting that
one is enough to cope with multiple HFs, which account in
turn for around 75% of the total CPU resources.

Figure 5 shows the performance of VoIPSTREAM when
using one source and one cloner, and increasing the number
of telemarketer detectors (TD). In BlockMon, the applica-
tion first scales up to four TDs with a processing rate of 40K
CDR/s, which we determined is the maximum throughput
that a single cloner can manage. With more than four TDs,
the CPU load on the single cloner is such that prevents the
cloner to fill the queues of the TDs fast enough: this leads
to inactivity periods on the TDs and consequently to per-
formance degradation. By adding one cloner the application
still scales. Same considerations hold for Storm, even if the
processing rate is up to 2.5x slower than with BlockMon. As
for Apache S4, we observed that the bottleneck is due to the
communication between the adapter and the cluster where
the application runs, which prevents the application from
scaling at all: in this case, VoIPSTREAM on BlockMon
runs up to 11.2x faster. Interestingly, we were not able to
run Apache S4 on the whole testbed: under high-memory
consumption cases, the communication between the node
and ZooKeeper hungs, thus partitioning the cluster. Devel-
opers of Apache S4 are aware of this issue.

The figure also reports the theoretical behavior of VoIP-
STREAM as the number N of TDs increases, showing how
BlockMon and Storm scale accordingly to it. A cloner repli-
cates a CDR when the hash of the source and the hash of the
destination mismatch, which happens with the probability
p = N−1

N
. Hence, given M CDRs emitted by the source, the

cloner outputs M ·(1+p) CDRs which are evenly distributed

ACM SIGCOMM Computer Communication Review 33 Volume 43, Number 2, April 2013

2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

#Telemarketer Detectors

ne
tw

or
k

us
ag

e
(M

b/
s)

BlockMon − 2 cloners
Storm − 2 cloners
Apache S4 − 2 cloners
BlockMon − 1 cloner
Storm − 1 cloner
Apache S4 − 1 cloner

Figure 7: VoIPSTREAM: total network usage.

across the TDs. As all TDs run the same algorithm, we can
assume that they finish to process CDRs at the same time,

giving a total theoretical processing rate of M·(1+p)
N

.
Finally, Figure 6 shows memory and CPU usage required

by the three platforms to run VoIPSTREAM, and BlockMon
needs at best 1

11
of the memory of Storm. Note that the

CPU usage in Apache S4 is almost constant and lower than
any other platforms due to its inability to scale, whereas its
memory cost increases as we add JVM into the cluster.

To show the gain in using BlockMon, we measured the
resources required to achieve the best processing rate that
Storm is able to handle. In our experiments, VoIPSTREAM
on Storm performs at best 36K CDRs/s, consuming in total
22GB of memory and 2308% of CPU on 13 machines (one
source, two cloners, ten TDs). At a rate of 39.8K CDRs/s,
BlockMon consumes 662MB of memory and 539% of CPU
on 6 machines (one source, one cloner and four TDs).

5. DISCUSSION
To investigate pitfalls of the platforms under test and to

stress their internals, in our experiments we removed (i) un-
fairness due to the use of different development languages
and run-time systems, and (ii) I/O and network bottlenecks.

In favour of a fair comparison, in VoIPSTREAM we used
on all the platforms the same C-library to handle the Bloom
filters; in Twitter trending instead we measured that the two
libraries for the JSON parsing exhibit the same performance.

To avoid bottlenecks due to the I/O and the network we
instrumented the source blocks to pack more records (either
CDRs or JSON formatted tweets) before sending the data to
the exporters. We verified that the rates at which our blocks
were processing data were lower than the link capacity which
instead was fully exhausted when disabling data processing.
Furthermore, we carried out experiments by running the
applications on a single twelve-core machine. Although in
this case blocks exchange data by using the internal CPU or
motherboard bus (whose speed is order of magnitude higher
than 1Gb/s) we measured performance rates similar to the
ones reported in Section 4.2: this demonstrates that the
network speed of 1Gb/s was not a limiting factor.

Therefore, we conclude that bottlenecks are intrinsic of
the design of the platforms, and of the way they handle mes-
sage passing through threads and queues. On Apache S4,
we noted that the source of Twitter trending represents al-
ready a limiting factor. A look at the source code showed
that sending out an event requires a series of nested copies,
thus affecting performance: the rate of one tweet source on

Storm, the other Java-based platform, is ten times faster.
Both in Storm and Apache S4, each node has a dedicated

thread for dispatching messages from the network to the
queues of the processing blocks. Moreover, we experienced
that Storm can become unstable when the application on
top runs for long period of time (hours in our case). We
believe the choice of ZMQ queues may have an impact here.
As they are not dropping, they keep growing in case the in-
stantiated bolts cannot cope with the rate at which data is
sent: as a consequence, bolts eventually run out of memory
and are relaunched with empty queues, hence losing tuples.
Users should take this pitfall into account in applications
such as Twitter trending, where moving data among nodes
is crucial. On the contrary, in BlockMon queues are auto-
matically blocking thanks to the design choice of using TCP
only, which also improves the overall stability of the plat-
form. To show the behavior of the queues in each platform,
Figure 7 reports the network usage in the VoIPSTREAM
case: the flat behavior in Storm and Apache S4, combined
with the increasing processing rate for Storm in Figure 5,
proves that queues are not blocking and can increase indef-
initely, in contrast with the linear increase of BlockMon.

5.1 Fault tolerant mechanisms and task assign-
ment

During our experiments we verified that the presence of
fault tolerant mechanisms on Storm and Apache S4 such as
ZooKeeper (BlockMon currently lacks this capability), does
not affect the performance of the overall execution of the
topology: the overhead of communication between the mas-
ter and the slaves is negligible in terms of CPU consumption
(<3%) on all nodes – note that no failure happened during
the experiments. Moreover, we experience this consideration
to hold also when enabling the ack mechanism on Storm2 –
disabled during our experiments as we had no failures.

It is worth pointing out that all considered platforms cur-
rently statically assign tasks to machines, regardless of in the
first instance they do it automatically (Storm and Apache S4)
or ask the users to do it manually (BlockMon). In the former
case, should a node fail, it is up to Zookeeper and Nimbus to
realize that a failure happened, stop the topology, reschedule
tasks and restart everything from scratch. For this reason,
while a topology is running, no mechanisms for improving
reliability or dynamically re-routing messages can slow down
Storm performance when compared to BlockMon. We be-
lieve this is a key point when dealing with performance: ex-
isting stream processing architectures require some re-design
(and BlockMon is the demonstration) to boost their perfor-
mance, as this gap in performance is not due to mechanisms
for high availability and dynamic message routing.

Additionally, Storm affects by itself the scalability of the
cluster. Let us assume an application requires two tasks to
exchange data over a 10Gbps link. As there is no way for
users to assign tasks to machines, to satisfy this require-
ment all machines must be equipped with such a network
card. Storm partially overcomes this problem with the use
of Kestrel servers [17], which allows users to set the data
source node and enable data reliability. The drawback is
that enabling Kestrel servers decreases the performance of
the application: in the case of VoIPSTREAM, we experi-
enced that BlockMon becomes up to 20x faster (not shown

2To control and react to any loss of tuples, users must im-
plement an ack and a fail methods within their application.

ACM SIGCOMM Computer Communication Review 34 Volume 43, Number 2, April 2013

here). Alternatively, Storm provides a pluggable scheduler,
though it is quite un-flexible: Storm assigns a fixed number
of slots (four by default) to a machine for running workers,
and the developer has to make sure that there are avail-
able slots on a given machine to run tasks – note that other
topologies could run simultaneously on a given machine, and
having slots already assigned.

6. RELATED WORK
The authors of [18] report the solutions adopted by the

companies Twitter, Facebook and LinkedIn: only the first
one has a platform specifically designed for streaming pro-
cessing, i.e., Storm, whereas the others combine a distributed
messaging system with a Hadoop cluster, in accordance with
the “store-and-analyze” paradigm. Scribe [19] is a server for
aggregating streaming log data, and is used by Facebook to
feed a MapReduce clusters over a Hadoop Distributed File
System. Kafka [20] is a distributed messaging system that
provides an infrastructure for the analysis of both fresh and
historical data: it is used by LinkedIn to feed an Hadoop-
based system with data for batch processing.

The authors of [6] integrate online-aggregation into a Map-
Reduce framework, thus allowing users to see “early returns”
from a job as it is being computed. Examples of other plat-
forms are Cloud MapReduce [21], HStreaming [22], DataS-
tax Brisk [23] and RapidMiner Streams Plugin [24]. All
these platforms are built on top of an already-existing batch
processing programming model, such as Hadoop or Rapid-
Miner. Recently, new platforms based on in-memory com-
putation have been proposed, such as Spark [7], yet they are
not oriented to the stream-processing of data.

7. CONCLUSIONS
In this paper we applied a stream-processing approach

to data monitoring. To this end, we extended BlockMon,
originally a packet-processing platform which run on a sin-
gle node, to run distributed general-purpose applications.
We compared our platform against the state-of-the-art of
open-source stream-processing platforms, namely Storm and
Apache S4, by implementing a phone anomaly detection sys-
tem and a Twitter trending mechanism on all of them. Our
results show that BlockMon performs better than the other
platforms by at least 2.5x (and up to 34.2x).

This work points out that existing stream-processing plat-
forms have serious issues when it comes to performance,
which are not due to mechanisms for high availability or
dynamic message routing: improving performance is possi-
ble, and our enhanced BlockMon showed that. We believe
that our findings can help improve existing architectures to
target stream data processing for network stream monitor-
ing. As future work, we plan to include the performance of
Hadoop-based platforms [25] into the comparison, and ad-
dress the design of fail tolerant mechanisms into BlockMon.

8. REFERENCES
[1] A. di Pietro, F. Huici, N. Bonelli, B. Trammell,

P. Kastovsky, T. Groleat, S. Vaton, and M. Dusi.
Blockmon: Toward high-speed composable network
traffic measurement. In Proceedings of the IEEE
Infocom Conference (mini-conference), 2013.

[2] G. Iannaccone. Fast prototyping of network data
mining applications. In Proceeding of the Passive and
Active Measurement Conference, 2006.

[3] N.Bonelli, A. Di Pietro, S. Giordano, and G. Procissi.
On multi–gigabit packet capturing with multi–core
commodity hardware. In Proceedings of the Passive
and Active Measurement Conference, 2012.

[4] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, 2008.

[5] Apache Hadoop. http://hadoop.apache.org (accessed
2012-11-10).

[6] T. Condie, N. Conway, P. Alvaro, J. Hellerstein,
K. Elmeleegy, and R. Sears. Mapreduce online. In
Proceedings of the USENIX NSDI Conference, 2010.

[7] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: a fault
tolerant abstraction for in-memory cluster computing.
In Proceedings of the USENIX NSDI conference, 2012.

[8] Storm. http://storm-project.net (accessed
2012-11-10).

[9] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4:
Distributed stream computing platform. In
Proceedings of the International Conference on Data
Mining Workshops, 2010.

[10] G. Bianchi, N. d’Heureuse, and S. Niccolini.
On-demand time-decaying bloom filters for
telemarketer detection. Comput. Commun. Rev.,
41(5):5–12, Sep. 2011.

[11] FP7 Demons Project. http://fp7-demons.eu (accessed
2012-11-10).

[12] BlockMon. http://blockmon.github.com/blockmon
(accessed 2012-11-10).

[13] The 0MQ Project. http://www.zeromq.org.

[14] The Nimbus Project. http://www.nimbusproject.org.

[15] Apache S4. http://incubator.apache.org/s4 (accessed
2012-11-10).

[16] GNIP. http://gnip.com.

[17] Kestrel Queues. https://github.com/robey/kestrel.

[18] D. Eyers, T. Freudenreich, A. Margara, S. Frischbier,
P. Pietzuch, and P. Eugster. Living in the present:
on-the-fly information processing in scalable web
architectures. In Proceedings of the ACM International
Workshop on Cloud Computing Platforms, 2012.

[19] Scribe. https://github.com/facebook/scribe.

[20] J. Kreps, N. Narkhede, and J. Rao. Kafka: A
distributed messaging system for log processing. In
Proceedings of the International Workshop on
Networking Meets Databases, 2011.

[21] Cloud MapReduce.
http://code.google.com/p/cloudmapreduce.

[22] HStreaming. http://www.hstreaming.com.

[23] Brisk. http://www.datastax.com/products/enterprise.

[24] C. Bockermann and H. Blom. Processing data streams
with the rapidminer streams-plugin. In Proceedings of
the RapidMiner Community Meeting and Conference,
2012.

[25] Y. Lee and Y. Lee. Toward scalable internet traffic
measurement and analysis with hadoop. Comput.
Commun. Rev., 43(1):5–13, Jan. 2013.

ACM SIGCOMM Computer Communication Review 35 Volume 43, Number 2, April 2013

