
Enabling Dynamic Network Processing with ClickOS

Mohamed Ahmed, Felipe Huici, and Armin Jahanpanah

NEC Europe Ltd.

1. INTRODUCTION

Software Defined Networking (SDN) is improving how flex-
ible networks are by allowing their basic components (e.g.,
switches and routers) to be easily programmable. Most of
the work so far has focused on network routing and on man-
aging SDNs; less attention has been paid to the packet pro-
cessing that is actually done in the network.

The original Internet architecture was based on the end-
to-end principle, with packets being forwarded through the
network largely unmodified. In the current Internet this
model is largely a thing of the past: NATs and firewalls were
the first commonly deployed devices that placed layer 4 (or
higher) functionality in the middle of the network, not just at
the endpoints, and devices such as DPI boxes, rate-limiters,
transparent web proxies, application accelerators and many
others have followed. In fact, a recent study shows that as
many as 33% of paths tested keep state and perform some
level of L4+ functionality [2].

What’s clear is that network processing, as embodied by
such middleboxes, forms a crucial part of today’s networks.
As a result, any sensible SDN should have mechanisms to
not only program the network, but also the packet process-
ing that takes place in it. Such a system should be able
to easily cover a wide range of middlebox functionality and
be extensible. In addition, it should have the ability to be
quickly and dynamically instantiated so that when the net-
work changes, the middlebox processing that takes place in
it can change along with it.

Finally, a critical requirement is that the system provide
isolation. In a SDN world where slices of networks are given
to different entities and users, it becomes increasingly impor-
tant that network processing from such users that happens
to run on common hardware do not affect each other, both
from a security and performance point of view.

Towards these requirements we introduce ClickOS, a min-
imalistic network operating system that runs on top of the
Xen hypervisor [1] and that is based on the Click modular
router software [3].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

2. SYSTEM DESCRIPTION

Ideally we would like to have an OS that can do middle-
box processing without all the overheads of a full-fledged
OS like Linux. While several minimalistic OSes exist, their
limited driver support would present a difficult obstacle for
a network-focused system. ClickOS takes advantage of the
best from two worlds: the small overheads of a minimalistic
OS (mini-os, which comes with the Xen source code) and
the driver support and isolation mechanisms provided by
Xen. In the rest of this section we discuss ClickOS’s design,
including its control and data planes.

2.1 Control Plane

The system consists of a set of ClickOS virtual machines
(vms), each composed of Click version 2.0.1 running on top
of mini-os (figure 1). In addition, Xen’s privileged domain,
called dom0, contains the ClickOS CLI and the Xen store.
The Xen store keeps control information about running vms,
such as their ids and what virtual interfaces they have.

Figure 1: ClickOS Architecture Overview

In addition to these basic parts, ClickOS’s control plane
consists of two mechanisms. The first is the control thread,
a mini-os thread that gets created at system start-up. This
thread adds an entry to the Xen store and then watches for
changes to it. When a Click configuration string is written
to it, it takes care of creating and running a Click instance,
where by instance we mean a running Click configuration
such as, for example, a firewall or NAT. The second mech-
anism is a new Click element called ClickOSControl which
takes care of reading and writing to element handlers from
the CLI (an element handler is a Click element internal vari-
able, e.g., a packet count for the element AverageCounter).

2.2 Data Plane

Xen has a split driver model, where a netback driver run-
ning in a driver domain (usually dom0) talks to hardware
devices; and a netfront driver running in a guest domain



(e.g., ClickOS) talks to the netback driver via shared mem-
ory, more specifically a ring.

Figure 2: ClickOS Data Plane.

Under a typical Xen set-up, a network card (in our case an
Intel X520-T2 dual-port 10Gb card using the ixgbe driver)
is linked to a virtual network device called a vif via a regular
Linux bridge (figure 2). When a packet is received, the Linux
kernel hands it to the vif, which queues it at the netback
driver. At a later point in time, one of the netback driver
threads picks up the packet and puts it on the shared ring,
notifying the netfront driver in the process.

In order to receive packets, our modified netfront driver
(see section 3) has a dedicated mini-os thread per vif. This
thread takes a packet from the shared ring and puts it in
the FromClickOS element’s queue (this is a new element we
created that knows how to talk to the netfront driver).

In addition to these per-vif threads, ClickOS creates one
mini-os thread for each Click instance. Such a Click thread
schedules FromClickOS to run, taking the packet from its
queue and sending it to the next element down the line. The
transmit process is similar but simpler: when scheduled, the
ToClickOS element takes a packet from an upstream ele-
ment and sends it directly to the shared ring via the net-
front’s transmit function.

3. EVALUATION

Image Size: ClickOS is compiled with most of the available
Click elements (221/267), the remaining ones requiring a
file system to work.1 The uncompressed ClickOS image is
12MB, the compressed one 2.9MB, and the virtual machine
needs a minimum of 5MB to run. This shows ClickOS’s
small footprint: in a quick test we were able to have as many
as 1,010 dummy virtual machines without network devices
before errors (not related to memory exhaustion) occurred.
Start-up Times: ClickOS boots quickly. Creating a ClickOS
virtual machine and starting a Click instance within in takes
roughly 7.9 seconds. Instantiating a Click instance in an ex-
isting ClickOS vm takes only 1 second.
Migration Time: ClickOS’s small image size and fast boot-
time mean that migrating a virtual machine without much
state (e.g., only a few forwarding rules for an IP router or a
few firewall rules) takes about 7.5 seconds (0.5 to stop, 0.9
to copy, 6.1 to restart the vm).
Netfront Performance: Out of the box, the mini-os net-
front driver performs rather poorly. To improve it, we in-
troduce three mechanisms: (1) poll : we change the driver’s
receive function to poll for packets from a dedicated mini-os
thread, rather than be interrupt driven; (2) GRU : we re-use
the grants that receive buffers are given and keep them for
the lifetime of the network device (a grant is Xen’s way of

1We are in the process of porting a simple file system to
increase the number of compiled elements.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

basic FR poll GRU poll+FR poll+GRU+FR

P
ac

ke
t R

at
e 

(P
ac

ke
ts

/s
)

Figure 3: Netfront Performance.

allowing two domains to share memory); and (3) FR: we
do fast re-fill of request entries in the shared ring, since the
netback driver cannot send packets to the netfront unless
requests are available on the shared ring.

Figure 3 shows netfront receive performance results for
maximum-sized packets under different set-ups. As men-
tioned, without improvements (“basic”) the netfront achieves
only 8,000 pkt/s, which equates to 96Mb/s, or less than 1%
of the 10Gb/s that our system’s NIC can achieve. The next
three bars are for rates when only one of the three mecha-
nisms is used, and show that an important gain can be had
by including only GRU (70,000 pkt/s). Using poll and FR
yields the best performance, equivalent to when all three
mechanisms are in place. We hypothesize that this is be-
cause at this point the bottleneck is somewhere else (possi-
bly the netback driver), and so the gains that adding GRU
gives go unnoticed. The final rate of about 360,000 packets
per second, equivalent to 4.3Gb/s, represent a 45x increase
with respect to the basic netfront driver; this is better than
the 2.9Gb/s reported in [4] for a Linux vm.

4. CONCLUSION

We presented ClickOS, a tiny network operating system
based on Xen and the Click modular router system. ClickOS’s
small size and quick start-up and migration times allow for
fast and dynamic instantiation of network processing in pro-
grammable networks such as SDNs. Further, we have shown
that ClickOS provides good performance, receiving packets
at rates of 4.3Gb/s on a single ClickOS vm. As future work,
we are partly through extending the netfront driver to sup-
port multiple vifs per ClickOS vm. We’re further working to
scale this performance with increasing number of ClickOS
vms, as well as seeing what the performance is like when
large number of vms are running in the system. We are also
in the process of implementing middlebox functionality in
ClickOS such as firewalls and carrier-grade NATs.

5. ACKNOWLEDGMENTS

We would like to thank Adam Greenhalgh for the original
idea behind ClickOS.

6. REFERENCES
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of
Virtualization. In Proc. ACM SOSP, 2003.

[2] Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam
Greenhalgh, Mark Handley, and Hideyuki Tokuda. Is it still
possible to extend tcp? In Proc. ACM IMC, 2011.

[3] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.
The click modular router. ACM Transactions on Computer

Systems, August 2000.

[4] K. K. Ram, J. R. Santos, Y. Turner, A. L. Cox, and S. Rixner.
Achieving 10 gb/s using safe and transparent network interface
virtualization. In Proc. ACM VEE, 2009, VEE ’09, 2009.


	Introduction
	System Description
	Control Plane
	Data Plane

	Evaluation
	Conclusion
	Acknowledgments
	References

