
My VM is Lighter (and Safer) than your Container
Filipe Manco

NEC Laboratories Europe
�lipe.manco@gmail.com

Costin Lupu
Univ. Politehnica of Bucharest

costin.lupu@cs.pub.ro

Florian Schmidt
NEC Laboratories Europe
�orian.schmidt@neclab.eu

Jose Mendes
NEC Laboratories Europe
jose.mendes@neclab.eu

Simon Kuenzer
NEC Laboratories Europe
simon.kuenzer@neclab.eu

Sumit Sati
NEC Laboratories Europe
sati.vicky@gmail.com

Kenichi Yasukata
NEC Laboratories Europe

kenichi.yasukata@neclab.eu

Costin Raiciu
Univ. Politehnica of Bucharest

costin.raiciu@cs.pub.ro

Felipe Huici
NEC Laboratories Europe
felipe.huici@neclab.eu

ABSTRACT
Containers are in great demand because they are lightweight
when compared to virtual machines. On the downside, con-
tainers o�er weaker isolation than VMs, to the point where
people run containers in virtual machines to achieve proper
isolation. In this paper, we examine whether there is indeed
a strict tradeo� between isolation (VMs) and e�ciency (con-
tainers). We �nd that VMs can be as nimble as containers, as
long as they are small and the toolstack is fast enough.

We achieve lightweight VMs by using unikernels for spe-
cialized applications and with Tinyx, a tool that enables
creating tailor-made, trimmed-down Linux virtual machines.
By themselves, lightweight virtual machines are not enough
to ensure good performance since the virtualization control
plane (the toolstack) becomes the performance bottleneck.
We present LightVM, a new virtualization solution based
on Xen that is optimized to o�er fast boot-times regardless
of the number of active VMs. LightVM features a complete
redesign of Xen’s control plane, transforming its centralized
operation to a distributed one where interactions with the
hypervisor are reduced to a minimum. LightVM can boot a
VM in 2.3ms, comparable to fork /execon Linux (1ms), and
two orders of magnitude faster than Docker. LightVM can
pack thousands of LightVM guests on modest hardware with
memory and CPU usage comparable to that of processes.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro�t or commercial advantage and that copies
bear this notice and the full citation on the �rst page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SOSP Õ17, October 28, 2017, Shanghai, China
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5085-3/17/10.
https://doi.org/10.1145/3132747.3132763

CCS CONCEPTS
¥ Software and its engineering ! Virtual machines ;
Operating Systems;

KEYWORDS
Virtualization, unikernels, specialization, operating systems,
Xen, containers, hypervisor, virtual machine.
ACM Reference Format:
Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon
Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe
Huici. 2017. My VM is Lighter (and Safer) than your Container. In
Proceedings of SOSP Õ17: ACM SIGOPS 26th Symposium on Operating
Systems Principles, Shanghai, China, October 28, 2017 (SOSP Õ17),
16 pages.
https://doi.org/10.1145/3132747.3132763

1 INTRODUCTION
Lightweight virtualization technologies such as Docker [6]
and LXC [25] are gaining enormous traction. Google, for
instance, is reported to run all of its services in containers [4],
and Container as a Service (CaaS) products are available
from a number of major players including Azure’s Container
Service [32], Amazon’s EC2 Container Service and Lambda
o�erings [1, 2], and Google’s Container Engine service [10].
Beyond these services, lightweight virtualization is cru-

cial to a wide range of use cases, including just-in-time in-
stantiation of services [23, 26] (e.g., �lters against DDoS
attacks, TCP acceleration proxies, content caches, etc.) and
NFV [41, 51], all while providing signi�cant cost reduction
through consolidation and power minimization [46].
The reasons for containers to have taken the virtualiza-

tion market by storm are clear. In contrast to heavyweight,
hypervisor-based technologies such as VMWare, KVM or
Xen, they provide extremely fast instantiation times, small
per-instance memory footprints, and high density on a single
host, among other features.

SOSP ’17, October 28, 2017, Shanghai, China Manco et al.

 200
 250
 300
 350
 400

 2002 2004 2006 2008 2010 2012 2014 2016 2018

N
o.

 o
f s

ys
ca

lls

Linux Release Year

Figure 1: The unrelenting growth of the Linux syscall
API over the years (x86_32) underlines the di!culty
of securing containers.

However, no technology is perfect, and containers are no
exception: security is a continuous thorn in their side. The
main culprit is the hugely powerful kernel syscall API that
containers use to interact with the host OS. This API is very
broad as it o�ers kernel support for process and thread man-
agement, memory, network, �lesystems, IPC, and so forth:
Linux, for instance, has 400 di�erent system calls [37], most
with multiple parameters and many with overlapping func-
tionality; moreover, the number of syscalls is constantly in-
creasing (see �gure 1). The syscall API is fundamentally more
di�cult to secure than the relatively simple x86 ABI o�ered
by virtual machines where memory isolation (with hardware
support) and CPU protection rings are su�cient. Despite the
many isolation mechanisms introduced in the past few years,
such as process and network namespaces, root jails, seccomp,
etc, containers are the target of an ever increasing number of
exploits [11, 22]. To complicate matters, any container that
can monopolize or exhaust system resources (e.g., memory,
�le descriptors, user IDs, forkbombs) will cause a DoS attack
on all other containers on that host [14, 35].

At least for multi-tenant deployments, this leaves us with
a di�cult choice between (1) containers and the security
issues surrounding them and (2) the burden coming from
heavyweight, VM-based platforms. Securing containers in
the context of an ever-expanding and powerful syscall API is
elusive at best. Could we make virtualization faster and more
nimble, much like containers? The explicit goal would be
to achieve performance in the same ball-park as containers:
instantiation in milliseconds, instance memory footprints of
a few MBs or less, and the ability to concurrently run one
thousand or more instances on a single host.

In this paper we introduce LightVM, a lightweightvirtual-
ization system based on a type-1 hypervisor. LightVM retains
the strong isolation virtual machines are well-known for
while providing the performance characteristics that make
containers such an attractive proposition. In particular, we
make the following contributions:

• An analysis of the performance bottlenecks prevent-
ing traditional virtualization systems from achieving
container-like dynamics (we focus our work on Xen).

• An overhaul of Xen’s architecture, completely remov-
ing its back-end registry (a.k.a. the XenStore), which
constitutes a performance bottleneck.We call this noxs
(no XenStore), and its implementation results in sig-
ni�cant improvements for boot and migration times,
among other metrics.
• A revamp of Xen’s toolstack, including a number of
optimizations and the introduction of a split toolstack
that separates functionality that can be run periodi-
cally, o�ine, from that whichmust be carried out when
a command (e.g., VM creation) is issued.
• The development of Tinyx, an automated system for
building minimalistic Linux-based VMs, as well as the
development of a number of unikernels. These light-
weight VMs are fundamental to achieving high perfor-
mance numbers, but also for discovering performance
bottlenecks in the underlying virtualization platform.
• A prototypical implementation along with an exten-
sive performance evaluation showing that LightVM is
able to boot a (unikernel) VM in as little as 2.3ms, reach
same-host VM densities of up to 8000 VMs, migration
and suspend/resume times of 60ms and 30ms/25ms re-
spectively, and per-VM memory footprints of as little
as 480KB (on disk) and 3.6MB (running).

To show its applicability, we use LightVM to implement
four use cases: personalized �rewalls, just-in-time service in-
stantiation, high density TLS termination and a lightweight
compute service akin to Amazon Lambda or Google’s Cloud
Functions but based on a Python unikernel. LightVM is avail-
able as open source at http://sysml.neclab.eu/projects/lightvm
.

2 REQUIREMENTS
The goal is to be able to provide lightweight virtualization
on top of hypervisor technology. More speci�cally, as re-
quirements, we are interested in a number of characteristics
typical of containers:
• Fast Instantiation: Containers are well-known for
their small startup times, frequently in the range of
hundreds of milliseconds or less. In contrast, virtual
machines are infamous for boot times in the range of
seconds or longer.
• High Instance Density: It is common to speak of
running hundreds or even up to a thousand containers
on a single host, with people even pushing this bound-
ary up to 10,000 containers [17]. This is much higher
than what VMs can typically achieve, which lies more
in the range of tens or hundreds at most, and normally
requires fairly powerful and expensive servers.
• Pause/unpause:Alongwith short instantiation times,
containers can be paused and unpaused quickly. This

My VM is Lighter (and Safer) than your Container SOSP ’17, October 28, 2017, Shanghai, China

 0
 200
 400
 600
 800

 1000

 0 200 400 600 800 1000

B
oo

t t
im

e
(m

s)

VM image size (MB)

Figure 2: Boot times grow linearly with VM image size.

can be used to achieve even higher density by pausing
idle instances, andmore generally tomake better use of
CPU resources. Amazon Lambda, for instance, “freezes”
and “thaws” containers.

The single biggest factor limiting both the scalability and
performance of virtualization is the size of the guest vir-
tual machines: for instance, both the on-disk image size as
well as the running memory footprint are on the order of
hundreds of megabytes to several gigabytes for most Linux
distributions. VM memory consumption imposes a hard up-
per bound on the number of instances that can be run on the
same server. Containers typically require much less memory
than virtual machines (a few MBs or tens of MBs) because
they share the kernel and have smaller root �lesystems.
Large VMs also slow down instantiation times: the time

needed to read the image from storage, parse it and lay it
out in memory grows linearly with image size. This e�ect is
clearly shown in Figure 2 where we boot the same unikernel
VM from images of di�erent sizes, all stored in a ramdisk.
We increase the size by injecting binary objects into the
uncompressed image �le. This ensures that the results are
due to the e�ects that image size has on VM initialization.

3 LIGHTWEIGHT VMS
The �rst step towards achieving our goals is to reduce both
the image size and the memory footprint of virtual machines.
We observe, as others [27], that most containers and virtual
machines run a single application; if we reduce the function-
ality of the VM to include only what is necessary for that
application, we expect to reduce the memory usage dramati-
cally. Concretely, we explore two avenues to optimize virtual
machine images:
• Unikernels : tiny virtual machines where a minimalis-
tic operating system (such as MiniOS [34]) is linked di-
rectly with the target application. The resulting VM is
typically only a fewmegabytes in size and can only run
the target application; examples include ClickOS [29]
and Mirage [27].
• Tinyx : a tool that we have built to create a tiny Linux
distribution around a speci�ed application. This results

in images that are a few tens of MBs in size and need
around 30MBs of RAM to boot.

3.1 Unikernels
There is a lot of prior work showing that unikernels have
very low memory footprint, and for speci�c applications
there already exist images that one can re-use: ClickOS is
one such example that can run custom Click modular router
con�gurations composed of known elements. Mirage [27] is
another example that takes applications written in OCaml
and creates a minimalistic app+OS combo that is packed as
a guest VM.
If one needs to create a new unikernel, the simplest is

to rely on Mini-OS [34], a toy guest operating system dis-
tributed with Xen: its functionality is very limited, there is no
user/kernel separation and no processes/fork. For instance,
only 50 LoC are needed to implement a TCP server over
Mini-OS that returns the current time whenever it receives a
connection (we also linked the lwip networking stack). The
resulting VM image, which we will refer to as the daytime
unikernel, is only 480KB (uncompressed), and can run in as
little as 3.6MB of RAM.1 We use the daytime unikernel as a
lower bound of memory consumption for possible VMs.
We have also created unikernels for more interesting ap-

plications, including a TLS termination proxy and Minipy-
thon, a Micropython-based unikernel to be used by Amazon
lambda-like services; both have images of around 1MB and
can run with just 8MB of memory.

In general, though, linking existing applications that rely
on the Linux syscall API toMini-OS is fairly cumbersome and
requires a lot of expert time. That is why we also explored
another approach to creating lightweight VMs based on the
Linux kernel, described next.

3.2 Tinyx
Tinyx is an automated build system that creates minimalistic
Linux VM images targeted at running a single application (al-
though the system supports having multiple ones). The tool
builds, in essence, a VM consisting of a minimalistic, Linux-
based distribution along with an optimized Linux kernel. It
provides a middle point between a highly specialized uniker-
nel, which has the best performance but requires porting of
applications to a minimalistic OS, and a full-�edged general-
purpose OS VM that supports a large number of applications
out of the box but incurs performance overheads.

The Tinyx build system takes two inputs: an application to
build the image for (e.g., nginx) and the platform the image
will be running on (e.g., a Xen VM). The system separately
builds a �lesystem/distribution and the kernel itself. For the

1The 3.6MB requires a small patch to Xen’s toolstack to get around the fact
that it imposes a 4MB minimum by default.

SOSP ’17, October 28, 2017, Shanghai, China Manco et al.

distribution, Tinyx includes the application, its dependencies,
and BusyBox (to support basic functionality).
To derive dependencies, Tinyx uses (1) objdumpto gen-

erate a list of libraries and (2) the Debian package manager.
To optimize the latter, Tinyx includes a blacklist of pack-
ages that are marked as required (mostly for installation, e.g.,
dpkg) but not strictly needed for running the application. In
addition, we include a whitelist of packages that the user
might want to include irrespective of dependency analysis.
Tinyx does not directly create its images from the pack-

ages since the packages include installation scripts which
expect utilities that might not be available in the minimalis-
tic Tinyx distribution. Instead, Tinyx �rst mounts an empty
OverlayFS directory over a Debian minimal debootstrap sys-
tem. In this mounted directory we install the minimal set of
packages discovered earlier as would be normally done in
Debian. Since this is done on an overlay mounted system,
unmounting this overlay gives us all the �les which are prop-
erly con�gured as they would be on a Debian system. Before
unmounting, we remove all cache �les, any dpkg/apt related
�les, and other unnecessary directories. Once this is done,
we overlay this directory on top of a BusyBox image as an
underlay and take the contents of the merged directory; this
ensures a minimalistic, application-speci�c Tinyx “distribu-
tion”. As a �nal step, the system adds a small glue to run the
application from BusyBox’s init.
To build the kernel, Tinyx begins with the “tinycon�g”

Linux kernel build target as a baseline, and adds a set of
built-in options depending on the target system (e.g., Xen
or KVM support); this generates a working kernel image.
By default, Tinyx disables module support as well as kernel
options that are not necessary for virtualized systems (e.g.,
baremetal drivers). Optionally, the build system can take
a set of user-provided kernel options, disable each one in
turn, rebuild the kernel with the olddefconfig target, boot
the Tinyx image, and run a user-provided test to see if the
system still works (e.g., in the case of an nginx Tinyx image,
the test includes attempting to wget a �le from the server);
if the test fails, the option is re-enabled, otherwise it is left
out of the con�guration. Combined, all these heuristics help
Tinyx create kernel images that are half the size of typical
Debian kernels and signi�cantly smaller runtime memory
usage (1.6MB for Tinyx vs. 8MB for the Debian we tested).

4 VIRTUALIZATION TODAY
Armed with our tiny VM images, we are now ready to ex-
plore the performance of existing virtualization technologies.
We base our analysis on Xen [3], which is a type-1 hyper-
visor widely used in production (e.g., in Amazon EC2). Xen
has a small trusted computing base and its code is fairly
mature, resulting in strong isolation (the ARM version of

Dom0 (Linux/NetBSD)

Hardware (CPU, Memory, MMU, NICs, …)

Xen Hypervisor

libxc libxs

libxl toolstack

xl

N
I
C

d
r
i
v
e
r
s

b
l
o
c
k

SW switch

v
i
r
t

d
r
i
v
e
r
s

n
e
t
b
a
c
k

x
e
n
b
u
s

DomU 1

n
e
t
f
r
o
n
t

x
e
n
b
u
s

OS (Linux)

apps

Xen
store

Figure 3: The Xen architecture including toolstack, the
XenStore, software switch and split drivers between
the driver domain (Dom0) and the guests (DomUs).

the hypervisor, for instance, consists of just 11.4K LoC [43],
and dissagregation [5] can be used to keep the size of critical
Dom0code low). The competing hypervisor, KVM, is based
on the Linux kernel and has a much larger trusted computing
base. To better understand the following investigation, we
start with a short introduction on Xen.

4.1 Short Xen Primer
The Xen hypervisor only manages basic resources such as
CPUs and memory (see Figure 3). When it �nishes booting,
it automatically creates a special virtual machine called Dom0.
Dom0typically runs Linux and hosts the toolstack, which in-
cludes the xl command and the libxl and libxc libraries
needed to carry out commands such as VM creation, migra-
tion and shutdown.

Dom0also hosts the XenStore, a proc-like central registry
that keeps track of management information such as which
VMs are running and information about their devices, along
with the libxs library containing code to interact with it.
The XenStore provides watchesthat can be associated with
particular directories of the store and that will trigger call-
backs whenever those directories are modi�ed.

Typically,Dom0also hosts a software switch (Open vSwitch
is the default) to mux/demux packets between NICs and the
VMs, as well as the (Linux) drivers for the physical devices.2
For communication between Dom0and the other guests, Xen
implements a split-drivermodel: a virtual back-end driver
running in Dom0(e.g., the netback driver for networking)
communicates over shared memory with a front-end driver
running in the guests (the netfront driver). So-called event

2Strictly speaking, this functionality can be put in a separate VM called a
driver domain, but in most deployments Dom0acts as a driver domain.

My VM is Lighter (and Safer) than your Container SOSP ’17, October 28, 2017, Shanghai, China

100

101

102

103

104

105

0 200 400 600 800 1000

T
im

e
[m

s]

Number of running guests

Debian Boot
Debian Create

Tinyx Boot

Tinyx Create
MiniOS Boot

MiniOS Create

Docker Boot
Docker Run

Process Create

Figure 4: Comparison of domain instantiation and
boot times for several guest types. With small guests,
instantiation accounts for most of the delay when
bringing up a new VM.

channels, essentially software interrupts, are used to notify
drivers about the availability of data.

4.2 Overhead Investigation
As a testing environment, we use a machine with an Intel
Xeon E5-1630 v3 CPU at 3.7 GHzand 128 GiBof DDR4 mem-
ory, and Xen and Linux versions 4.8. We then sequentially
start 1000 virtual machines and measure the time it takes to
createeach VM (the time needed for the toolstack to prepare
the VM), and the time it takes the VM to boot. We do this for
three types of VMs that exemplify vastly di�erent sizes: �rst,
a VM running a minimal install of Debian jessie that we view
as a typical VM used in practice; second, Tinyx, where the
distribution is bundled into the kernel image as an initramfs;
and �nally, the daytime unikernel.

Figure 4 shows creation and boot times for these three VM
types, Docker containers, and basic Linux processes (as a
baseline). All VM images are stored on a ramdisk to eliminate
the e�ects that disk I/O would have on performance.

The Debian VM is 1.1GB in size; it takes Xen around 500ms
to create the VM when there are no other VMs running, and
it takes the VM 1.5 seconds to boot. The Tinyx VM (9.5MB
image) is created in 360ms and needs a further 180ms to boot.
The �rst unikernel (480KB image) is created in 80ms, and
needs 3ms to boot.

Docker containers start in around 200ms, and a process is
created and launched (using fork/exec) in 3.5ms on average
(9ms at the 90% percentile). However, for both processes and
containers creation time does not depend on the number of
existing containers or processes.
As we keep creating VMs, however, the creation time

increases noticeably (note the logarithmic scale): it takes 42s,

0
200
400
600
800

1000
1200
1400
1600
1800

0 200 400 600 800 1000

T
im

e
[m

s]

Number of running guests

toolstack
load

devices
xenstore

hypervisor
config

Figure 5: Breakdown of the VM creation overheads
shows that the main contributors are interactions
with the XenStore and the creation of virtual devices.

10s and 700ms to create the thousandth Debian, Tinyx, and
unikernel guest, respectively. These results are surprising,
since all the VMs are idle after they boot, so the total system
utilization should be low regardless of the number of VMs.
Another result is also apparent from this test: as the size
of the VM decreases, the creation time contributes a larger
and larger fraction of the time that it takes from starting the
VM creation to its availability: with lightweight VMs, the
instantiation of new VMs becomes the main bottleneck.
To understand VM creation overheads, we instrumented

Xen’s xl command-line tool and its libxl library, and cate-
gorized the work done into several categories:
• Parsing the con�guration �le that describes the VM
(kernel image, virtual network/block devices, etc.).
• Interactingwith the hypervisor to, for example, reserve
and prepare the memory for the new guest, create the
virtual CPUs, and so on.
• Writing information about the new guest in the Xen-
Store, such as its name.
• Creating and con�guring the virtual devices.
• Parsing the kernel image and loading it into memory.
• Internal information and state keeping of the toolstack
that do not �t into any of the above categories.

Figure 5 shows the creation overhead categorized in this
way. It is immediately apparent that there are two main
contributors to the VM creation overhead: the XenStore in-
teraction and the device creation, to the point of negligibility
of all other categories.3 Device creation dominates the guest
instantiation times when the number of currently running
guests is low; its overhead stays roughly constant when we
keep adding virtual machines.

3Note that this already uses oxenstored, the faster of the two available
implementations of the XenStore. Results with cxenstored show much
higher overheads.

SOSP ’17, October 28, 2017, Shanghai, China Manco et al.

However, the time spent onXenStore interactions increases
superlinearly, for several reasons. The protocol used by the
XenStore is quite expensive, where each operation requires
sending a message and receiving an acknowledgment, each
triggering a software interrupt: a single read or write thus
triggers at least two, and most often four, software inter-
rupts and multiple domain changes between the guest, hy-
pervisor and Dom0kernel and userspace; as we increase the
number of VMs, so does the load on this protocol. Secondly,
writing certain types of information, such as unique guest
names, incurs overhead linear with the number of machines
because the XenStore compares the new entry against the
names of all other already-running guests before accepting
the new guest’s name. Finally, some information, such as
device initialization, requires writing data in multiple Xen-
Store records where atomicity is ensured via transactions.
As the load increases, XenStore interactions belonging to
di�erent transactions frequently overlap, resulting in failed
transactions that need to be retried.
Finally, it is worth noting that the spikes on the graph

are due to the fact that the XenStore logs every access to
log �les (20 of them), and rotates them when a certain max-
imum number of lines is reached (13,215 lines by default);
the spikes happen when this rotation takes place. While dis-
abling this logging would remove the spikes, it would not
help in improving the overall creation times, as we veri�ed
in further experiments not shown here.

5 LIGHTVM
Our target is to achieve VM boot times comparable to process
startup times. Xen has not been engineered for this objec-
tive, as the results in the previous section show, and the root
of these problems is deeper than just ine�cient code. For
instance, one fundamental problem with the XenStore is its
centralized, �lesystem-like API which is simply too slow for
use during VM creation and boot, requiring tens of inter-
rupts and privilege domain crossings. Contrast this to the
fork system call which requires a single software interrupt
– a single user-kernel crossing. To achieve millisecond boot
times we need much more than simple optimizations to the
existing Xen codebase.

To this end, we introduce LightVM, a complete re-design
of the basic Xen control plane optimized to provide light-
weight virtualization. The architecture of LightVM is shown
in Figure 6. LightVM does not use the XenStore for VM cre-
ation or boot anymore, using instead a lean driver called
noxs that addresses the scalability problems of the XenStore
by enabling direct communication between the frontend
and backend drivers via shared memory instead of relaying
messages through the XenStore. Because noxsdoes not rely
on a message passing protocol but rather on shared pages

Dom0 (Linux/NetBSD)

chaos

NI
C

dr
iv

er
s

bl
oc

k

SW switch

vi
rt

dr
iv

er
s

ne
tb

ac
k

libchaos
(prepare)

chaos
daemon

libchaos
(execute)

NO
XS

libxc

xendevd

Figure 6: LightVM architecture showing noxs, xl Õs re-
placement (chaos), the split toolstack and accompany-
ing daemon, and xendevdin charge of quickly adding
virtual interfaces to the software switch.

mapped in the guest’s address space, reducing the number
of software interrupts and domain crossings needed for VM
operations (create/save/resume/migrate/destroy).

LightVM provides a split toolstack that separates VM cre-
ation functionality into a prepare and an execute phase,
reducing the amount of work to be done on VM creation.
We have also implemented chaos/libchaos , a new virtu-
alization toolstack that is much leaner than the standard
xl/libxl , in addition to a small daemon called xendevd
that quickly adds virtual interfaces to the software switch or
handles block device images’ setup. We cover each of these
in detail in the next sections.

5.1 Noxs (no XenStore) and the Chaos
Toolstack

The XenStore is crucial to the way Xen functions, with many
xl commands making heavy use of it. By way of illustra-
tion, Figure 7a shows the process when creating a VM and
its (virtual) network device. First, the toolstack writes an
entry to the network back-end’s directory, essentially an-
nouncing the existence of a new VM in need of a network
device. Previous to that, the back-end placed a watch on that
directory; the toolstack writing to this directory triggers the
back-end to assign an event channel and other information
(e.g., grant references, a mechanism for sharing memory be-
tween guests) and to write it back to the XenStore (step 2
in the �gure). Finally, when the VM boots up it contacts the
XenStore to retrieve the information previously written by

My VM is Lighter (and Safer) than your Container SOSP ’17, October 28, 2017, Shanghai, China

!"#$ % &' %
()*+,-! %

&' %
./"-0,-! %

1,
-(

23
%

-,
0.

/"
-0

%

4,- %
30"/, %

1,
-(

23
%

-,
0(

)*
+

%

 0""530)*+ %

1
2

3
backend-id
event channel id
grant reference

(a) XenStore

dom0 NW
frontend

ne
tf
ro
nt

NW
backend

ne
tb
ac
k

toolstack

backend-id
event channel id
grant reference

1 2 3

hypervisor
memory
page

h
yp

e
rc

al
l

h
yp

e
rc

al
l

device
create

4

NO
XS

io
ct

l

backend-id
event channel id
grant reference

(b) noxs

Figure 7: Standard VM creation process in Xen using
the XenStore versus our noxs implementation.

the network back-end (step 3). The above is a simpli�cation:
in actuality, the VM creation process alone can require in-
teraction with over 30 XenStore entries, a problem that is
exacerbated with increasing number of VMs and devices.
Is it possible to forego the use of the XenStore for opera-

tions such as creation, pause/unpause and migration? As it
turns out, most of the necessary information about a VM is
already kept by the hypervisor (e.g., the VM’s id, but not the
name, which is kept in the XenStore but is not needed during
boot). The insight here is that the hypervisor already acts as
a sort of centralized store, so we can extend its functionality
to implement our noxs (no XenStore) mechanism.
Speci�cally, we begin by replacing libxl and the corre-

sponding xl command with a streamlined, thin library and
command called libchaos and chaos, respectively (cf. Fig-
ure 6); these no longer make use of the XenStore and its
accompanying libxs library.
In addition, we modify Xen’s hypervisor to create a new,

special device memory page for each new VM that we use
to keep track of a VM’s information about any devices, such
as block and networking, that it may have. We also include

a hypercall to write to and read from this memory page,
and make sure that, for security reasons, the page is shared
read-only with guests, with only Dom0allowed to request
modi�cations.
When a chaos create command is issued, the toolstack

�rst requests the creation of devices from the back-end(s)
through an ioctl handled by the noxsLinux kernel module
(step 1 in Figure 7b).4 The back-end then returns the details
about the communication channel for the front-end. Second,
the toolstack calls the new hypercall asking the hypervisor
to add these details to the device page (step 2).
When the VM boots, instead of contacting the XenStore,

it will ask the hypervisor for the address of the device page
and will map the page into its address space using hyper-
calls (step 3 in the �gure); this requires modi�cations to the
guest’s operating system, which we have done for Linux and
Mini-OS. The guest will then use the information in the page
to initiate communication with the back-end(s) by mapping
the grant and binding to the event channel (step 4). At this
stage, the front and back-ends set up the device by exchang-
ing information such as its state and its MAC address (for
networking); this information was previously kept in the
XenStore and is now stored in a device control page pointed
to by the grant reference. Finally, front and back-ends no-
tify each other of events through the event channel, which
replaces the use of XenStore watches.

To support migration without a XenStore, we create a new
pseudo-device called sysctl to handle power-related opera-
tions and implement it following Xen’s split driver model,
with a back-end driver (sysctlback) and a front-end (sysctl-
front) one. These two drivers share a device page through
which communication happens and an event channel.

With this in place, migration begins by chaosopening
a TCP connection to a migration daemon running on the
remote host and by sending the guest’s con�guration so that
the daemon pre-creates the domain and creates the devices.
Next, to suspend the guest, chaos issues an ioctl to the
sysctl back-end, which will set a �eld in the shared page to
denote that the shutdown reason is suspend, and triggers
the event channel. The front-end will receive the request to
shutdown, upon which the guest will save its internal state
and unbind noxs-related event channels and device pages.
Once the guest is suspended we rely on libxc code to send
the guest data to the remote host.

5.2 Split Toolstack
In the previous section we showed that a large fraction of
the overheads related to VM creation and other operations
comes from the toolstack itself. Upon closer investigation, it

4Currently this mechanism only works if the back-ends run in Dom0, but
the architecture allows for back-ends to run on a di�erent virtual machine.

SOSP ’17, October 28, 2017, Shanghai, China Manco et al.

standard toolstack

PREPARE PHASE
EXECU

TE PHASE

2. COMPUTE ALLOCATION
 fn1 … fnN

1. HYPERVISOR RESERVATION
 fn1 … fnN

3. MEMORY RESERVATION
 fn1 … fnN
 4. MEMORY PREPARATION
 fn1 … fnN
 5. DEVICE PRE-CREATION
 fn1 … fnN
 6. CONFIGURATION PARSING
 fn1 … fnN
 7. DEVICE INITIALIZATION
 fn1 … fnN
 8. IMAGE BUILD
 fn1 … fnN
 9. VIRTUAL MACHINE BOOT
 fn1 … fnN

VM
 C

RE
AT

E
PR

O
CE

SS

2. COMPUTE ALLOCATION
 fn1 … fnN

1. HYPERVISOR RESERVATION
 fn1 … fnN

3. MEMORY RESERVATION
 fn1 … fnN
 4. MEMORY PREPARATION
 fn1 … fnN
 5. DEVICE PRE-CREATION
 fn1 … fnN

6. CONFIGURATION PARSING
 fn1 … fnN
 7. DEVICE INITIALIZATION
 fn1 … fnN
 8. IMAGE BUILD
 fn1 … fnN
 9. VIRTUAL MACHINE BOOT
 fn1 … fnN

VM create
command

chaos
command

split toolstack

Daemon
(background
operation)

Figure 8: Toolstack split between functionality be-
longing to the prepare phase, carried out periodically
by the chaos daemon, and an execute phase, directly
called by chaoswhen a command is issued.

turns out that a signi�cant portion of the code that executes
when, for instance, a VM create command is issued, does not
actually need to run at VM creation time. This is because
this code is common to all VMs, or at least common to all
VMs with similar con�gurations. For example, the amount
of memory may di�er between VMs, but there will generally
only be a small number of di�ering memory con�gurations,
similar to OpenStack’s �avors. This means that VMs can be
pre-executed and thus o�-loaded from the creation process.
To take advantage of this, we replace the standard Xen

toolstack with the libchaos library and split it into two
phases. The preparephase (see Figure 8) is responsible for
functionality common to all VMs such as having the hyper-
visor generate an ID and other management information and
allocating CPU resources to the VM. We o!oad this func-
tionality to the chaosdaemon, which generates a number
of VM shellsand places them in a pool. The daemon ensures
that there is always a certain (con�gurable) number of shells
available in the system.
The executephase then begins when a VM creation com-

mand is issued. First, chaos parses the con�guration �le
for the VM to be created. It then contacts the daemon and
asks for a shell �tting the VM requirements, which is then
removed from the pool. On this shell, the remaining VM-
speci�c operations, such as loading the kernel image into
memory and �nalizing the device initialization, are executed
to create the VM, which is then booted.

5.3 Replacing the Hotplug Script: xendevd
The creation of a virtual device by the driver domain usually
requires some mechanism to setup the device in user-space
(e.g., by adding a vif to the bridge). With standard Xen this

 1

 4

 16

 64

 256

 1024

 4096

 0 200 400 600 800 1000

xl

chaos [XS]
chaos [XS+split]

chaos [NoXS] LightVM

C
re

at
io

n
T

im
e

[m
s]

Number of Running VMs

Figure 9: Creation times for up to 1,000 instances
of the daytime unikernel for all combinations of
LightVMÕs mechanisms. ÒxlÓ denotes standard Xen
with no optimizations.

process is done either by xl , calling bash scripts that take
care of the necessary initialization or by udevd, calling the
same scripts when the backend triggers the udev event. The
script that is executed is usually user-con�gured, giving great
�exibility to implement di�erent scenarios. However launch-
ing and executing bash scripts is a slow process taking tens
of milliseconds, considerably slowing down the boot process.
To work around this, we implemented this mechanism as a
binary daemon called xendevdthat listens for udev events
from the backends and executes a pre-de�ned setup without
forking or bash scripts, reducing setup time.

6 EVALUATION
In this sectionwe present a performance evaluation of LightVM,
including comparisons to standard Xen and, where applica-
ble, Docker containers. We use two x86 machines in our tests:
one with an Intel Xeon E5-1630 v3 CPU at 3.7 GHz (4 cores)
and 128GB of DDR4 RAM, and another one consisting of
four AMD Opteron 6376 CPUs at 2.3 GHz (with 16 cores
each) and 128GB of DDR3 RAM. Both servers run Xen 4.8.
We use a number of di�erent guests: (1) three Mini-OS-

based unikernels, including noop, the daytime unikernel,
and one based on Micropython [31] which we call Minipy-
thon; (2) a Tinyx noopimage (no apps installed) and a Tinyx
image with Micropython; and (3) a Debian VM. For container
experiments we use Docker version 1.13.

6.1 Instantiation Times
We want to measure how long it takes to create and boot a
virtual machine, how that scales as the number of running
VMs on the system increases, and how both of these com-
pare to containers. We further want to understand how the
LightVM mechanisms a�ect these times.

My VM is Lighter (and Safer) than your Container SOSP ’17, October 28, 2017, Shanghai, China

 1
 4

 16
 64

 256
 1024
 4096

 16384
 65536

 0 1000 2000 3000 4000 5000 6000 7000 8000

Ti
m

e
[m

s]

Number of Running VMs/Containers

Docker
LightVM

Figure 10: LightVM boot times on a 64-core machine
versus Docker containers.

For the �rst test, we boot up to 1,000 daytime unikernels,
and we measure the time it takes for the n’th unikernel to be
created. We repeat this experiment with all combinations of
the LightVM mechanisms: chaos+ XenStore, chaos+ noxs,
chaos+ split toolstack and chaos+ noxs+ split toolstack;
we also include measurements when running out-of-the-box
Xen (labeled “xl”). We run the tests on the 4-core machine,
with one core assigned toDom0and the remaining three cores
assigned to the VMs in a round-robin fashion.

The results are shown in Figure 9. Out of the box, Xen (the
“xl” curve) has creation times of about 100ms for the �rst VM,
scaling rather poorly up to a maximum of just under 1 second
for the 1000th VM. In addition, the curve shows spikes at reg-
ular intervals as a result of the log rotation issue mentioned
earlier in the paper. Replacing xl with chaosresults in a no-
ticeable improvement, with creation times ranging now from
roughly 15 to 80ms. Adding the split toolstack mechanism
to the equation improves scalability, showing a maximum of
about 25ms for the last VMs. Removing the XenStore (chaos
+ noxs curve) provides great scalability, essentially yielding
low creation times in the range of 8-15 ms for the last VMs.
Finally, we obtain the best results with all of the optimiza-
tions (chaos+ noxs+ split toolstack) turned on: boot times
as low as 4ms going up to just 4.1ms for the 1,000th VM. As
a �nal point of reference, using a noopunikernel with no
devices and all optimizations results in a minimum boot time
of 2.3ms.
Next, we test LightVM against Docker containers when

using even larger numbers of instances (see Figure 10). To
measure this, we used the 64-core AMD machine, assigning
4 cores to Dom0and the remaining 60 to the VMs in a round-
robin fashion; we used the noopunikernel for the guests
themselves. As before, the best results come when using
chaos+ noxs+ split toolstack, which shows good scalability
with increasing number of VMs, up to 8,000 of them in this
case. Docker containers start at about 150ms and ramp up to

 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

 1024

 0 200 400 600 800 1000

T
im

e
[m

s]

Number of Running VMs/Containers

Tinyx over LightVM
Docker

Unikernel over LightVM

Figure 11: Boot times for unikernel and Tinyx guests
versus Docker containers.

about 1 second for the 3,000th container. The spikes in that
curve coincide with large jumps in memory consumption,
and we stop at about 3,000 because after that the next large
memory allocation consumes all available memory and the
system becomes unresponsive.

For the �nal test we show how the boot times of a Tinyx
guest compare to those of a unikernel, and we further plot a
Docker container curve for comparison (see Figure 11). As
expected, the unikernel performs best, but worthy of note
is the fact that Tinyx, a Linux-based VM, performs rather
close to Docker containers up to roughly 750 VMs (250 per
core on our test machine). The increase in boot times as the
number of VMs per core increases is due to the fact that
even an idle, minimal Linux distribution such as Tinyx runs
occasional background tasks. As the number of VMs per core
increases, contention for CPU time increases, increasing the
boot time of each VM. In contrast, idling docker containers
or unikernels do not run such background tasks, leading to
no noticeable increase in boot times.

6.2 Checkpointing and Migration
In the next set of experiments we use the 4-core machine
and the daytime unikernel to test save/restore (i.e., check-
pointing) and migration times. In all tests we use a RAM disk
for the �lesystem so that the results are not skewed by hard
drive access speeds. We assign two cores to Dom0and the
remaining two to the VMs in a round-robin fashion.
For checkpointing, the experimental procedure is as fol-

lows. At every run of the test we start 10 guests and randomly
pick 10 guests to be checkpointed; for instance, in the �rst
run all 10 guests created are checkpointed, in the second one
20 guests exist out of which 10 are checkpointed, and so on
up to a total of 1,000 guests. This is to show how quick check-
pointing is when the system is already running N numbers
of guests. The results are shown in Figure 12a and Figure 12b,

SOSP ’17, October 28, 2017, Shanghai, China Manco et al.

 1
 2
 4
 8

 16
 32
 64

 128
 256

 0 200 400 600 800 1000

Ti
m

e
[m

s]

Number of Running VMs

xl
chaos+xenstore

LightVM

(a) Save

 1
 4

 16
 64

 256
 1024

 0 200 400 600 800 1000

T
im

e
[m

s]

Number of Running VMs

xl
chaos [XS]

chaos [NoXS]
LightVM

(b) Restore

Figure 12: Checkpointing times using the daytime unikernel.

 1
 4

 16
 64

 256
 1024
 4096

 0 200 400 600 800 1000

T
im

e
[m

s]

Number of Running VMs

xl
chaos [XS]

chaos [NoXS]
LightVM

Figure 13: Migration times for the
daytime unikernel.

split between save and restore times, respectively. The �g-
ures show that LightVM can save a VM in around 30ms and
restore it in 20ms, regardless of the number of running guests,
while standard Xen needs 128ms and 550ms respectively.

For migration tests we carry out the same procedure of
starting 10 guests and randomly choosing 10 tomigrate. Once
the 10 guests are migrated, we replace the migrated guests
with 10 new guests to make sure that the right number of
guests are running on the source host for the next round of
the test (e.g., if we have 100 guests, we migrate 10, leaving
90 on the source host; we then create 10, leaving 100 at the
source host so that it is ready for the next round).

We plot migration times for the daytime unikernel in Fig-
ure 13. As in previous graphs, turning all optimizations on
(chaos, noxsand split toolstack) yields the best results, with
migration times of about 60ms irrespective of how many
VMs are currently running on the host. For low number of
VMs the chaos+ XenStore slightly outperforms LightVM:
this is due to device destruction times in noxswhich we have
not yet optimized and remain as future work.

6.3 Memory Footprint
One of the advantages of containers is that, since they use
a common kernel, their memory usage stays low as their
numbers increase. This is in contrast to VMs, where each
instance is a full replica of the operating system and �lesys-
tem. In our next experiment we try to see if small VMs can
get close to the memory scalability that containers provide.
For the test we use the 4-core machine and allocate a single
core to Dom0and the remaining 3 to the VMs as before. We
use three types of guests: a Minipython unikernel, a Tinyx
VM with Micropython installed, and a Debian VM also with
Micropython installed. For comparison purposes we also
conduct tests with a Docker/Micropython container and a
Micropython process.

Generally, the results (Figure 14) show that the unikernel’s
memory usage is fairly close to that of Docker containers.
The Tinyx curve is higher, since multiple copies of the Linux
kernel are running; however, the additional memory con-
sumption is not dramatic: for 1,000 guests, the system uses

 1
 4

 16
 64

 256
 1024
 4096

 16384
 65536

0 200 400 600 800 1000
M

em
or

y
U

sa
ge

 [M
B]

VM/Container/Process #

Debian
Tinyx

Docker Micropython
Minipython

Micropython Process

Figure 14: Scalability of VM memory usage for di"er-
ent VMs, for containers and for processes.

about 27GB versus 5GB for Docker. This 22GB di�erence is
small for current server memory capacity (100s of GBs or
higher) and memory prices. Debian consumes about 114GB
when running 1,000 VMs (assuming 111MB per VM, the
minimum needed for them to run).

6.4 CPU Usage
For the �nal test of the section we take a look at CPU usage
when using a noopunikernel, Tinyx and a Debian VM, and
plot these against usage for Docker. For the VM measure-
ments we use iostat to get Dom0’s CPU usage and xentop
to get the guests’ utilizations.
As shown in Figure 15, Docker containers have the low-

est utilization although the unikernel is only a fraction of
a percentage point higher. Tinyx also fares relatively well,
reaching a maximum utilization of about 1% when running
1,000 guests. The Debian VM scales more poorly, reaching
about 25% for 1,000 VMs: this is because each Debian VM
runs a number of services out of the box that, taken together,
results in fairly high CPU utilization. In all, the graph shows
that CPU utilizations for VMs can be roughly on par with
that of containers, as long as the VMs are trimmed down to
include only the functionality crucial for the target applica-
tion.

My VM is Lighter (and Safer) than your Container SOSP ’17, October 28, 2017, Shanghai, China

 0

 5

 10

 15

 20

 25

0 200 400 600 800 1000

C
P

U
 U

til
iz

at
io

n
(%

)

Number of Running VMs/Containers

Debian
Tinyx

Unikernel
Docker

Figure 15: CPU usage for a unikernel, Tinyx, a Debian
VM and Docker.

7 USE CASES
We now explore scenarios where lightweight virtualization
can bring a tangible bene�t over the status quo. In all the fol-
lowing scenarios, using containers would help performance
but weaken isolation, while using full-blown VMs would pro-
vide the same isolation as lightweight VMs, but with poorer
performance.

7.1 Personal Firewalls
The number of attacks targeting mobile phones is increasing
constantly [30]. Running up-to-date �rewalls and intrusion
detection/prevention on the mobile phone is di�cult, so one
option is to scrub the tra�c in the cloud instead. Ideally, each
mobile user should be able to run a personal �rewall that is
on-path of the tra�c to avoid latency in�ation.

Recently, mobile operators have startedworking onmobile-
edge computing (MEC) [16], which aims to run processing
as close as possible to mobile users and, to this end, deploys
servers co-located with mobile gateways situated at or near
the cellular base stations (or cells).

The MEC is an ideal place to instantiate personal �rewalls
for mobile users. The di�culty is that the amount of deployed
hardware at any single cell is very limited (one or a few
machines), while the number of active users in the cell is on
the order of a few thousand. Moreover, users enter and leave
the cell continuously, so it is critical to be able to instantiate,
terminate andmigrate personal �rewalls quickly and cheaply,
following the user through the mobile network.

Using full-blown Linux VMs is not feasible because of their
large boot times (a few seconds) and their large image sizes
(GBs) which would severely increase migration duration and
network utilization. Using containers, on the other hand, is
tricky because malicious users could try to subvert the whole
MEC machine and would be able to read and tamper with
other users’ tra�c.

Instead, we rely on ClickOS, a unikernel specialized for
network processing [29] running a simple �rewall con�gu-
ration we have created. The resulting VM image is 1.7MB in
size and the VM needs just 8MB of memory to run; we can
run as many as 8000 such �rewalls on our 64-core AMD ma-
chine, and booting one instance takes about 10ms. Migrating
a ClickOS VM over a 1Gbps, 10ms link takes just 150ms.
We want to see if the ClickOS VMs can actually do use-

ful work when so many of them are active simultaneously.
We start 1000 VMs running �rewalls for 1000 emulated mo-
bile clients, and then run an increasing number of iperf
instances, each instance representing one client and being
serviced by a dedicated VM. We limit each client’s through-
put to 10Mbps to mimic typical 4G speeds in busy cells. We
measure total throughput as well added latency. For the latter,
we have one client run ping instead of iperf.

The results, run on a server with an Intel Xeon E5-2690 v4
2.6 GHz processor (14 cores) and 64GB of RAM, are shown
in Figure 16a. The cumulative throughput grows linearly
until 2.5Gbps (250 clients), each client getting 10Mbps. After
that, heavy CPU contention curbs the throughput increase:
the average per-user throughput is 6.5Mbps when there are
500 active users, and 4Mbps with 1000 active users. The
per-packet added latency is negligible with few active users
(tens), but increases to 60ms when 1000 users are active; this
is to be expected since the Xen scheduler will e�ectively
round-robin through the VMs. We note that VMs servicing
long �ows care less about latency, and a better scheduler
could prioritize VMs servicing few packets (like our ping
VM); this subject is worth future investigation.

To put the performance in perspective, we note that the
maximum theoretical download throughput of LTE-advanced
is just 3.3Gbps (per cell sector), implying that a single ma-
chine running LightVM would be able to run personalized
�rewalls for all the users in the cell without becoming a
performance bottleneck.

7.2 Just-in-Time Service Instantiation
Our second use-case also targets mobile edge computing:
we are interested in dynamically o�oading work from the
mobile to the edge as proposed by [28]; the most important
metrics are responsiveness and the ability to o�er the service
to as many mobile devices as possible. We implemented a
dummy service that boots a VMwhenever it receives a packet
from a new client, and keeps the VM running as long as the
client is actively sending packets; after 2s of inactivity we tear
down the VM. To measure the worst-case client perceived
latency, we have each client send a single ping request, and
have the newly booted VM reply to pings.

We use open-loop client arrivals with di�erent intensities
and plot the CDFs of ping times in Figure 16b. The di�erent

SOSP ’17, October 28, 2017, Shanghai, China Manco et al.

 0

 1

 2

 3

 4

1 100 250 500 750 1000
0

10

20

30

40

50

60

T
ot

al
 T

hr
ou

gh
pu

t(
G

bp
s)

R
T

T
 (

m
s)

Running VMs

Throughput
RTT

(a) Running personal #rewalls for
1000 users using ClickOS.

 0

 0.25

 0.5

 0.75

 1

 0 20 40 60 80 100

C
D

F

ping RTT

10ms
25 ms
50 ms

100 ms

(b) Just-in-time instantiation of VMs
to service mobile clients.

 0
 250
 500
 750

 1000
 1250
 1500

1 100 250 500 750 1000

T
hr

ou
gh

pu
t (

K
re

q/
s)

of instances

bare metal
Tinyx

unikernel

(c) TLS termination throughput for up
to 1000 end points.

Figure 16: LightVM use cases.

curves correspond to varying client inter-arrival rates: with
one new client every 25 ms, the client-measured latency is
13ms in the median and 20ms at the 90%. With one new
client every 10 ms, the RTTs improve up to the point that
our Linux bridge is overloaded and starts dropping packets
(mostly ARP packets), hence some pings time out and there
is a long tail for the client-perceived latency.

7.3 High Density TLS Termination
The Snowden leaks have revealed the full extent of state-level
surveillance, and this has pushed most content providers to
switch to TLS (i.e., HTTPS) to the point where 70% of Internet
tra�c is now encrypted [39]. TLS, however, requires at least
one additional round-trip time to setup, increasing page load
times signi�cantly if the path RTT is large. The preferred
solution to reduce this e�ect is to terminate TLS as close to
the client as possible using a content-distribution network
and then serve the content from the local cache or fetch it
from the server over a long-term encrypted tunnel.

Even small content providers have started relying onCDNs,
which now must serve a larger number of customers on the
same geographically-distributed server deployments. TLS
termination needs the long term secret key of the content
provider, requiring strong isolation between di�erent content-
providers’ HTTPS proxies; simply running these in contain-
ers is unacceptable, while running full Linux VMs is too
heavyweight.
We have built two lightweight VMs for TLS termination:

one is based on Minipython and the other one is based on
Tinyx. Our target is to support as many TLS proxies as pos-
sible on a single machine, so we rely on axtls [12], a TLS
library for embedded systems optimized for size. The uniker-
nel relies on the lwip networking stack, boots in 6ms and
uses 16MB of RAM at runtime. The Tinyx machine uses
40MB of RAM and boots in 190ms.

To understand whether the CDN provider can e�ciently
support many simultaneous customers on the same box, we
have N apachebenchclients continuously requesting the
same empty �le over HTTPS from N virtual machines. We

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 200 400 600 800 1000

V
M

 r
un

tim
e

(s
)

VM #

chaos [XS]
LightVM

Figure 17: Lightweight compute function service time
on an overloaded machine (Minipython unikernels)

measure the aggregate throughput on the 14-core machine
and plot it in Figure 16c (bare metal means a Linux process,
i.e., no hypervisor). The graph shows that adding more VMs
increases total throughput; this is because more VMs fully
utilize all CPUs to perform public-key operations, masking
protocol overheads. Tinyx’s performance is very similar to
that of running processes on a bare-metal Linux distribu-
tion: around 1400 requests per second are serviced. This
number is low because we use 1024-bit RSA keys instead of
more e�cient variants such as ECDHE. Finally, note that the
unikernel only achieves a �fth of the throughput of Tinyx;
this is mostly due to the ine�cient lwip stack. With appro-
priate engineering, the stack can be �xed, however reaching
the maturity of the Linux kernel TCP stack is a tall order.
These results highlight the tradeo�s one must navigate

when aiming for lightweight virtualization: either use Tinyx
or other minimalistic Linux-based VMs that are inherently
slower to boot (hundreds of ms) and more memory hungry,
or invest considerable engineering e�ort to develop minimal
unikernels that achieve millisecond-level boot times and
allow for massive consolidation.

7.4 Lightweight Compute Service
On-demand compute services such as Amazon’s Lambda or
blockchain-backed distributed ledgers are increasing in pop-
ularity. Such services include data, image, or video aggrega-
tions and conversions, or cryptographic hash computations,
and perform calculations that often do not last more than a

My VM is Lighter (and Safer) than your Container SOSP ’17, October 28, 2017, Shanghai, China

 0
 20
 40
 60
 80

 100
 120
 140

 0 50 100 150 200 250 300

of

 c
on

cu
rr

en
t V

M
s

Time [s]

chaos [XS]
LightVM

Figure 18: Number of concurrently running Minipy-
thon unikernels for the compute service use case.

few seconds. Further, there is no need to keep state between
independent calculations which means that the service can
be simply destroyed after �nishing the calculation. Never-
theless, compute services for di�erent tenants need strong
isolation to reduce sensitive information leaks.

Lightweight VMs are a perfect match for such lightweight
computation services. For this use case we rely on the Mini-
python unikernel we created which runs computations writ-
ten in Python, similar to Amazon’s Lambda. The unikernel
uses the the lightweight MicroPython interpreter and also
links a networking stack. In addition, we have implemented
a daemon in Dom0that receives compute service requests (in
the form of python programs) and spawns a VM to run the
program. When the program �nishes the VM shuts down.
We ran experiments on our four-core machine. All compute
services calculated an approximation of e that takes approxi-
mately 0.8 seconds. The domains were spawned on three of
the four cores (with the fourth exclusively used by Dom0).
We generate one thousand compute requests in an open

loop with inter-arrival times of 250ms. This is faster than our
machine can cope (266ms inter-arrivals lead to full utiliza-
tion), slowly increasing load on the system. Creation times
are not strongly a�ected by the increasing load, since Dom0
had its own dedicated core. Creation times for noxs slowly
increase from approximately 2.8 msto approximately 3.5 ms.
Using the split toolstack and its pre-created domains takes a
nearly constant 1.3 msregardless of the number of already-
created domains. Figure 17 shows the time it takes for the
nth compute request to be serviced in this overloaded sys-
tem, and Figure 18 shows the number of active VMs as a
function of time. Notice how our optimizations, in particular
not using the XenStore, improve the completion times by a
factor of 5 when the system is slightly overloaded (100-200
backlogged VMs); here the work reduction provided by noxs
allows other VMs to do useful work instead, reducing the
number of backlogged VMs.

8 RELATED WORK
A number of OS-level virtualization technologies exist and
are widely deployed, including Docker, LXC, FreeBSD jails
and Linux-VServer, among others [6, 13, 25, 42]. In terms

of high density, the work in [17] shows how to run 10,000
Docker containers on a single server. Zhang et al. implement
network functions using Docker containers and can boot
up to 80K of them [51]. In our work, we make the case for
lightweight virtualization on top of a hypervisor, providing
strong isolation while retaining the attractive properties
commonly found in containers.
A number of works have looked into optimizing hyper-

visors such as Xen, KVM and VMWare [3, 20, 47] to reduce
their overheads in terms of boot times and other metrics. For
example, Intel Clear Containers [45] (ICC) has similarities
to our work but a di�erent goal. ICC tries to run containers
within VMs with the explicit aim of keeping compatibility
with existing frameworks (Docker, rkt); this compatibility
results in overheads. LightVM optimizes both the virtualiza-
tion system and guests, achieving performance similar to
or better than containers without sacri�cing isolation. We
have also showed that it is possible to make automated build
tools to minimize the e�ort needed to make such special-
ized guests (i.e., with Tinyx). ICC also optimizes parts of
the virtualization system (e.g., the toolstack), but does not
provide other features such as the split toolstack and uses
larger guests: an ICC guest is 70MB and boots in 500ms [19]
as opposed to a Tinyx one which is about 10MB and boots
in about 300ms.

ukvm[50] implements a specialized unikernel monitor on
top of KVM and uses MirageOS unikernels to achieve 10 ms
boot times (the main metric the work focuses on). Jitsu [26]
optimizes parts of Xen to implement just-in-time instantia-
tion of network services by accelerating connection start-up
times. Earlier work [48] implemented JIT instantiation of
honeypots through the use of image cloning; unlike the work
there, we do not require the VMs on the system to run the
same application in order to achieve scalability. The work
in [36] optimizes xl toolstack overheads, but their use of
Linux VMs results in boot times in the hundreds of millisec-
onds or seconds range. LightVM aims to provide container-
like dynamics; as far as we know, this is the �rst proposal
to simultaneously provide small boot, suspend/resume and
migration times (sometimes an order of magnitude smaller
than previous work), high density and low per-VM memory
footprints.
Beyond containers and virtual machines, other works

have proposed the use of minimalistic kernels or hypervi-
sors to provide lightweight virtualization. Exokernel [8] is a
minimalistic operating system kernel that provides applica-
tions with the ability to directly manage physical resources.
NOVA [44] is a microhypervisor consisting of a thin virtual-
ization layer and thus aimed at reducing the attack surface
(NOVA’s TCB is about 36K LoC, compared to for instance
11.4K for Xen’s ARM port). The Denali isolation kernel is
able to boot 10K VMs but does not support legacy OSes and

SOSP ’17, October 28, 2017, Shanghai, China Manco et al.

has limited device support [49]. The work in [40] proposes
the implementation of cloudlets to quickly o�oad services
from mobile devices to virtual machines running in a cluster
or data center, although the paper reports VM boot times in
the 60-90 seconds range. The Embassies project [7, 15] and
Drawbridge [33] make a similar case than us by providing
strong isolation through picoprocesses that have a narrow
interface (the way VMs do), though the target there was
running isolated user-space applications or web client apps.

Finally, unikernels [27] have seen signi�cant research in-
terest; prior work includes Mirage [27], ClickOS [29], Erlang
on Xen [9] and OSv [21] to name just a few. Our work does
not focus on unikernels, but rather leverages them to be able
to separate the e�ects coming from the virtual machine from
those of the underlying virtualization platform. For example,
they allow us to reach high density numbers without having
to resort to overly expensive servers.

9 DISCUSSION AND OPEN ISSUES
Memory sharing : LightVM does not use page sharing be-
tween VMs, assuming the worst-case scenario where all
pages are di�erent. One avenue of optimization is to use
memory de-duplication (as proposed by SnowFlock [24])
to reduce the overall memory footprint; unfortunately this
requires non-negligible changes to the virtualization system.
Generality : While LightVM is based on Xen, most of its
components can be extended to other virtualization plat-
forms such as KVM. This includes (1) the optimized toolstack,
where work such as ukvm[50] provides a lean toolstack for
KVM (among other things); (2) the pre-creation of guests,
which is independent of the underlying hypervisor tech-
nology; and (3) the use of specialized OSes and unikernels,
several of which already exist for non-Xen hypervisors (e.g.,
the Solo5 unikernel [18], rump kernels [38], OSv [21]). The
one feature that is Xen-speci�c is the XenStore, though KVM
keeps similar information in the Linux kernel (process infor-
mation) and in the QEMU process (device information).
Usability and portability : Despite its compelling perfor-
mance, LightVM is still not as easy to use as containers.
Container users can rely on a large ecosystem of tools and
support to run unmodi�ed existing applications.
LightVM exposes a clear trade-o� between performance

and portability/usability. Unikernels provide the best per-
formance, but require non-negligible development time and
manual tweaking to get an image to compile against a target
application. Further, debugging and extracting the best per-
formance out of them is not always trivial since they do not
come with the rich set of tools that OSes such as Linux have.
At the other extreme, VMs based on general-purpose OSes
such as Linux require no porting and can make use of ex-
isting management tools, but their large memory footprints

and high boot times, among other issues, have at least partly
resulted in the widespread adoption of containers (and their
security problems).

In designing and implementing the Tinyx build system we
tried to take a �rst step towards solving the problem: Tinyx
provides better performance than a standard Debian distri-
bution without requiring any application porting. However,
Tinyx is still a compromise: we sacri�ce some performance
with respect to unikernels in order to keep the ecosystem
and existing application support.
The ultimate goal is to be able to automatically build

custom-OSes targeting a single application. For instance,
the Rump Kernels project [38] builds “unikernels”, relying
on large portions of NetBSD to support existing applications.
This is not quite what we would need since the performance
and size of the resulting images are not in the same order
of magnitude as LightVM. Part of the solution would have
to decompose an existing OS into �ne-granularity modules,
automatically analyze an application’s dependencies, and
choose which is the minimum set of modules needed for the
unikernel to compile. This area of research is future work.

10 CONCLUSIONS
We have presented LightVM, a complete redesign of Xen’s
toolstack optimized for performance that can boot a minimal-
istic VM in as little as 2.3ms, comparable to the fork /execim-
plementation in Linux (1ms). Moreover, LightVM has almost
constant creation and boot times regardless of the number
of running VMs; this is in contrast to the current toolstack
that can take as much as 1s to create a VM when the system
is loaded. To achieve such performance LightVM foregoes
Xen’s centralized toolstack architecture based on the Xen-
Store in favor of a distributed implementation we call noxs,
along with a reimplementation of the toolstack.

The use cases we presented show that there is a real need
for lightweight virtualization, and that it is possible to si-
multaneously achieve both good isolation and performance
on par or better than containers. However, there is a devel-
opment price to be paid: unikernels o�er best performance
but require signi�cant engineering e�ort which is useful for
highly popular apps (such as TLS termination) but likely
too much for many other applications. Instead, we have pro-
posed Tinyx as a midway point: creating Tinyx images is
streamlined and (almost) as simple as creating containers,
and performance is on par with that of Docker containers.

ACKNOWLEDGMENTS
This paper has received funding from the European Union’s
Horizon 2020 research and innovation programme under
grant agreement no. 671566 (“Super�uidity”).

My VM is Lighter (and Safer) than your Container SOSP ’17, October 28, 2017, Shanghai, China

REFERENCES
[1] Amazon Web Services [n. d.]. Amazon EC2 Container Service. https:

//aws.amazon.com/ecs/. ([n. d.]).
[2] Amazon Web Services [n. d.]. AWS Lambda - Serverless Compute.

https://aws.amazon.com/lambda. ([n. d.]).
[3] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,

Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew War�eld. 2003. Xen
and the Art of Virtualization. SIGOPS Oper. Syst. Rev.37, 5 (Oct. 2003),
164–177. https://doi.org/10.1145/1165389.945462

[4] J. Clark. [n. d.]. Google: “EVERYTHING at Google runs in
a container”. http://www.theregister.co.uk/2014/05/23/google_
containerization_two_billion/. ([n. d.]).

[5] Patrick Colp, Mihir Nanavati, Jun Zhu, William Aiello, George Coker,
Tim Deegan, Peter Loscocco, and AndrewWar�eld. 2011. Breaking Up
is Hard to Do: Security and Functionality in a Commodity Hypervi-
sor. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (SOSP Õ11). ACM, New York, NY, USA, 189–202.
https://doi.org/10.1145/2043556.2043575

[6] Docker [n. d.]. The Docker Containerization Platform. https://www.
docker.com/. ([n. d.]).

[7] John R. Douceur, Jeremy Elson, Jon Howell, and Jacob R. Lorch. 2008.
Leveraging Legacy Code to Deploy Desktop Applications on the Web.
In Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation (OSDIÕ08). USENIX Association, Berkeley,
CA, USA, 339–354. http://dl.acm.org/citation.cfm?id=1855741.1855765

[8] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. 1995. Exokernel: An
Operating System Architecture for Application-level Resource Man-
agement. In Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles (SOSP Õ95). ACM, New York, NY, USA, 251–266.
https://doi.org/10.1145/224056.224076

[9] Erlang on Xen 2012. Erlang on Xen. http://erlangonxen.org/. (July
2012).

[10] Google Cloud Platform [n. d.]. The Google Cloud Platform Container
Engine. https://cloud.google.com/container-engine. ([n. d.]).

[11] A. Gratta�ori. [n. d.]. Understanding and Hardening Linux Contain-
ers. https://www.nccgroup.trust/us/our-research/understanding-and-
hardening-linux-containers/. ([n. d.]).

[12] Cameron Hamilton-Rich. [n. d.]. axTLS Embedded SSL. http://axtls.
sourceforge.net. ([n. d.]).

[13] Poul henning Kamp and Robert N. M. Watson. 2000. Jails: Con�ning
the omnipotent root. In In Proc. 2nd Intl. SANE Conference.

[14] J. Hertz. [n. d.]. Abusing Privileged and Unprivileged Linux Contain-
ers. https://www.nccgroup.trust/uk/our-research/abusing-privileged-
and-unprivileged-linux-containers/. ([n. d.]).

[15] Jon Howell, Bryan Parno, and John R. Douceur. 2013. Embassies:
Radically Refactoring the Web. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 13).
USENIX, Lombard, IL, 529–545. https://www.usenix.org/conference/
nsdi13/technical-sessions/presentation/howell

[16] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie
Young. 2015. Mobile Edge Computing - A key technology towards 5G.
ETSI White Paper No. 11, First edition(2015).

[17] IBM. [n. d.]. Docker at insane scale on IBM Power Sys-
tems. https://www.ibm.com/blogs/bluemix/2015/11/docker-insane-
scale-on-ibm-power-systems. ([n. d.]).

[18] IBM developerWorks Open [n. d.]. Solo5 Unikernel. https://developer.
ibm.com/open/openprojects/solo5-unikernel/. ([n. d.]).

[19] Intel. [n. d.]. Intel Clear Containers: A Breakthrough Combination
of Speed and Workload Isolation. https://clearlinux.org/sites/default/
�les/vmscontainers_wp_v5.pdf. ([n. d.]).

[20] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.
2007. KVM: the Linux Virtual Machine Monitor. In In Proc. 2007 Ottawa
Linux Symposium (OLS Õ07).

[21] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don
Marti, and Vlad Zolotarov. 2014. OSv—Optimizing the Operating Sys-
tem for Virtual Machines. In Proceedings of the 2014 USENIX Annual
Technical Conference (USENIX ATC Õ14). USENIX Association, Philadel-
phia, PA, 61–72. https://www.usenix.org/conference/atc14/technical-
sessions/presentation/kivity

[22] E. Kovacs. [n. d.]. Docker Fixes Vulnerabilities, Shares Plans For
Making Platform Safer. http://www.securityweek.com/docker-�xes-
vulnerabilities-shares-plans-making-platform-safer. ([n. d.]).

[23] Simon Kuenzer, Anton Ivanov, Filipe Manco, Jose Mendes, Yuri
Volchkov, Florian Schmidt, Kenichi Yasukata, Michio Honda, and Fe-
lipe Huici. 2017. Unikernels Everywhere: The Case for Elastic CDNs.
In Proceedings of the 13th ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments (VEE Õ17). ACM, New York, NY,
USA, 15–29. https://doi.org/10.1145/3050748.3050757

[24] Horacio Andrés Lagar-Cavilla, Joseph AndrewWhitney, AdinMatthew
Scannell, Philip Patchin, Stephen M. Rumble, Eyal de Lara, Michael
Brudno, andMahadev Satyanarayanan. 2009. SnowFlock: Rapid Virtual
Machine Cloning for Cloud Computing. In Proceedings of the 4th ACM
European Conference on Computer Systems (EuroSys Õ09). ACM, New
York, NY, USA, 1–12. https://doi.org/10.1145/1519065.1519067

[25] LinuxContainers.org [n. d.]. LinuxContainers.org. https://
linuxcontainers.org. ([n. d.]).

[26] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas
Gazagnaire, David Sheets, Dave Scott, RichardMortier, Amir Chaudhry,
Balraj Singh, Jon Ludlam, Jon Crowcroft, and Ian Leslie. 2015. Jitsu:
Just-In-Time Summoning of Unikernels. In 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI Õ15). USENIX As-
sociation, Oakland, CA, 559–573. https://www.usenix.org/conference/
nsdi15/technical-sessions/presentation/madhavapeddy

[27] Anil Madhavapeddy and David J. Scott. 2013. Unikernels: Rise of the
Virtual Library Operating System. Queue11, 11, Article 30 (Dec. 2013),
15 pages. https://doi.org/10.1145/2557963.2566628

[28] Y. Mao, J. Zhang, and K. B. Letaief. 2016. Dynamic Computation Of-
�oading for Mobile-Edge Computing With Energy Harvesting Devices.
IEEE Journal on Selected Areas in Communications34, 12 (Dec 2016),
3590–3605. https://doi.org/10.1109/JSAC.2016.2611964

[29] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Mi-
chio Honda, Roberto Bifulco, and Felipe Huici. 2014. ClickOS and the
Art of Network Function Virtualization. In 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI Õ14). USENIX As-
sociation, Seattle, WA, 459–473. https://www.usenix.org/conference/
nsdi14/technical-sessions/presentation/martins

[30] McA�ee. 2016. Mobile Threat Report. https://www.mcafee.com/us/
resources/reports/rp-mobile-threat-report-2016.pdf. (2016).

[31] MicroPython [n. d.]. MicroPython. https://micropython.org/. ([n. d.]).
[32] Microsoft. [n. d.]. Azure Container Service. https://azure.microsoft.

com/en-us/services/container-service/. ([n. d.]).
[33] Microsoft Research. [n. d.]. Drawbridge. https://www.microsoft.com/

en-us/research/project/drawbridge/. ([n. d.]).
[34] minios [n. d.]. Mini-OS. https://wiki.xenproject.org/wiki/Mini-OS. ([n.

d.]).
[35] A. Mourat. [n. d.]. 5 security concerns when using Docker.

https://www.oreilly.com/ideas/�ve-security-concerns-when-using-
docker. ([n. d.]).

[36] Vlad Nitu, Pierre Olivier, Alain Tchana, Daniel Chiba, Antonio Bar-
balace, Daniel Hagimont, and Binoy Ravindran. 2017. Swift Birth and
Quick Death: Enabling Fast Parallel Guest Boot and Destruction in the

SOSP ’17, October 28, 2017, Shanghai, China Manco et al.

Xen Hypervisor. In Proceedings of the 13th ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environments (VEE Õ17). ACM,
New York, NY, USA, 1–14. https://doi.org/10.1145/3050748.3050758

[37] MAN page. [n. d.]. Linux system calls list. http://man7.org/linux/man-
pages/man2/syscalls.2.html. ([n. d.]).

[38] Rumpkernel.org [n. d.]. Rump Kernels. http://rumpkernel.org/. ([n.
d.]).

[39] Sandvine. [n. d.]. Internet tra�c encryption. https://www.sandvine.
com/trends/encryption.html. ([n. d.]).

[40] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel
Davies. 2009. The Case for VM-Based Cloudlets in Mobile Computing.
IEEE Pervasive Computing8, 4 (Oct. 2009), 14–23. https://doi.org/10.
1109/MPRV.2009.82

[41] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy,
Sylvia Ratnasamy, and Vyas Sekar. 2012. MakingMiddleboxes Someone
Else’s Problem: Network Processing As a Cloud Service. In Proceedings
of the ACM SIGCOMM 2012 Conference on Computer Communication
(SIGCOMM Õ12). ACM, New York, NY, USA, 13–24. https://doi.org/10.
1145/2342356.2342359

[42] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier,
and Larry Peterson. 2007. Container-based Operating System Vir-
tualization: A Scalable, High-performance Alternative to Hypervi-
sors. SIGOPS Oper. Syst. Rev.41, 3 (March 2007), 275–287. https:
//doi.org/10.1145/1272998.1273025

[43] S. Stabellini. [n. d.]. Xen on ARM. http://www.slideshare.net/xen_
com_mgr/alsf13-stabellini. ([n. d.]).

[44] Udo Steinberg and Bernhard Kauer. 2010. NOVA: A Microhypervisor-
based Secure Virtualization Architecture. In Proceedings of the 5th
European Conference on Computer Systems (EuroSys Õ10). ACM, New
York, NY, USA, 209–222. https://doi.org/10.1145/1755913.1755935

[45] A. van de Ven. [n. d.]. An introduction to Clear Containers. https:
//lwn.net/Articles/644675/. ([n. d.]).

[46] Akshat Verma, Gargi Dasgupta, Tapan Kumar Nayak, Pradipta De, and
Ravi Kothari. 2009. Server Workload Analysis for Power Minimization
Using Consolidation. In Proceedings of the 2009 USENIX Annual Techni-
cal Conference (USENIX ATC Õ09). USENIX Association, Berkeley, CA,
USA, 28–28. http://dl.acm.org/citation.cfm?id=1855807.1855835

[47] VMWare. [n. d.]. vSphere ESXi Bare-Metal Hypervisor. http://www.
vmware.com/products/esxi-and-esx.html. ([n. d.]).

[48] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft,
Alex C. Snoeren, Geo�rey M. Voelker, and Stefan Savage. 2005. Scal-
ability, Fidelity, and Containment in the Potemkin Virtual Honey-
farm. SIGOPS Oper. Syst. Rev.39, 5 (Oct. 2005), 148–162. https:
//doi.org/10.1145/1095809.1095825

[49] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. 2002. Scale
and Performance in the Denali Isolation Kernel. SIGOPS Oper. Syst.
Rev.36, SI (Dec. 2002), 195–209. https://doi.org/10.1145/844128.844147

[50] Dan Williams and Ricardo Koller. 2016. Unikernel Monitors: Extend-
ing Minimalism Outside of the Box. In 8th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud Õ16). USENIX Association, Den-
ver, CO. https://www.usenix.org/conference/hotcloud16/workshop-
program/presentation/williams

[51] Wei Zhang, Jinho Hwang, Shriram Rajagopalan, K.K. Ramakrish-
nan, and Timothy Wood. 2016. Flurries: Countless Fine-Grained
NFs for Flexible Per-Flow Customization. In Proceedings of the 12th
International on Conference on Emerging Networking EXperiments
and Technologies (CoNEXT Õ16). ACM, New York, NY, USA, 3–17.
https://doi.org/10.1145/2999572.2999602

