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ABSTRACT
The Internet has seen a proliferation of specialized middle-
box devices that carry out crucial network functionality such
as load balancing, packet inspection or intrusion detection,
amongst others. Traditionally, high performance network
devices have been built on custom multi-core, specialized
memory hierarchies, architectures which are well suited to
packet processing. Recently, commodity PC hardware has
experienced a move to multiple multi-core chips, as well as
the routine inclusion of multiple memory hierarchies in the
so-called NUMA architectures. While a PC architecture is
obviously not specifically targeted to network applications,
it nevertheless provides tremendous performance cheaply.
Furthermore, a few commodity switch technologies have re-
cently emerged offering the possibility to control the switch-
ing of flows in a rather fine grained manner. Put together,
these new technologies offer a new network commodity plat-
form enabling new flow processing and forwarding at an un-
precedented flexibility and low cost.

1. INTRODUCTION
In the last few years two trends have started to reshape the

Internet. The first of these is steady encroachment of eco-
nomic reality on the architecture of the network itself; pri-
marily this takes the form of embedding higher level knowl-
edge inside the network to enhance the ability to manage
services, make better use of limited resources and control
costs. Usually this means using middleboxes such as fire-
walls[11], traffic shapers[14], load balancers[13], IDS and IPS
systems[7], and application enhancement boxes[16, 17, 18].
It has become rare to find an end-to-end path that does not
encounter at least one such device.

Middleboxes have become a multi-billion dollar market,
but network operators do not spend all this money without
good reason: such technologies have become essential to pro-
viding high levels of service for key applications. The great
merit of the original Internet architecture was its ability to
support as-yet-unforeseen applications, but the downside is
that the network does not know when the applications it
supports are actually working. To prosper, enterprises need
additional control, and middleboxes provide this.

The second trend lies in the commoditization of hard-
ware. Over many years components and systems designed

primarily for the mass market achieve such large volumes
of sales that their capabilities increase to displace high-end
products. The canonical example is the rise of the Intel
x86 CPU architecture, first displacing high-end Unix work-
stations running on RISC processors, and now breaking into
the very top of the supercomputer league tables. In the data
center, the commoditization of the 1U form-factor x86 server
combined with drastically reduced CPU costs has greatly
narrowed the price gap between server and desktop systems:
a rack-mount case still costs more than a desktop case, but
very capable servers can be bought for $1500 complete with
multiple onboard Gigabit ethernet NICs.

It is, however, not only computers that have become com-
modity items. A few years ago, many people were forecast-
ing the risk that network processors would displace custom
silicon in high-end router platforms. However, something
different happened. The combination of a rise in very capa-
ble and cheap chipsets for Gigabit ethernet from the likes of
Broadcom and Marvell, huge volume shipments from compa-
nies such as Dell and Netgear, and bulk manufacturing from
manufactures such as Quanta (who also make many of the
world’s laptops) has caused switching to become commodi-
tized. As with x86 processors, the low end has started to
increase in capability and displace high-end specialist prod-
ucts. Today’s 48-port gigabit switches support both layer 2
and layer 3 forwarding, ACLs and other features at a price
of around $20 per port; commodity 10 gigabit switches are
now starting to emerge.

Researchers and middlebox manufacturers are both well
aware of the capabilities of x86 commodity hardware, but
the commoditization of switch hardware and the potential to
rewrite their control software has not received quite the same
attention. While switches have become more powerful, they
are still relatively inflexible devices: as a platform, they are
rather limited in capability. Things only become interesting
when you combine switches with servers.

Consider now the confluence of these two trends. There
is a huge proliferation of middleboxes, each servicing a sin-
gle role performing L4-L7 functionality on data flows. At
the same time, we now have cheap and extremely capable
switching and processing components. However the switches
are too dumb and the servers have their limitations (despite
their pretty good performance, there is only so much you
can do with one box before memory bottlenecks start to



kick in[6]). The clear solution is to build a generic net-
work control, forwarding and flow processing platform from
commodity switch hardware unified with a small cluster of
servers, all managed as a single platform. Such a platform
is inexpensive, very flexible, scalable, and tolerant of failure.

Perhaps more importantly, the rise of such platforms would
open up the possibility of a commodity market for high-
performance middlebox software, where a network operator
might be able to mix and match control and management
software in a way which is currently difficult at best.

The biggest downside of middleboxes is that they embed
into the network knowledge of today’s applications at the
expense of tomorrow’s innovations. It might seem like we are
attempting to encourage this process, but the reality is that
it has already happened. Once a middlebox is deployed, the
cost of changing is substantial. We hope that by encouraging
a common platform for such capabilities, and by making
this market one for software rather than for appliances, the
additional flexibility and reduced time to deployment might
remove some of the barriers faced by innovative applications
of the future.

The rest of the paper is organized as follows. Section 2
describes the building blocks or technologies we base the
platform on in greater detail; section 3 provides an overview
of Flowstream, our proposed flow processing platform, in-
cluding usage scenarios and applications; section 4 discusses
the consolidation of the platform, section 5 covers related
work and section 6 highlights our conclusions.

2. BUILDING BLOCKS
So far we have identified two trends, the middleboxes in

the network and the commoditization of servers and switches.
We also reached the conclusion that the solution is to build
a generic network control, forwarding and flow processing
platform from these commoditized elements. In this section
we describe the building blocks of such a platform in greater
detail before discussing how these might be put together in
the next section.

2.1 Commodity Switches
How cheap have network switches become? In order to

answer this question, we conducted a survey of a range of
lower-end gigabit switches, calculating for each the retail
price per port. While this survey is by no means thorough,
it gives a good idea of what the costs are when purchasing
a lower-end network switch.

Figure 1 shows the results of the survey. We classified the
switches into four groups: those with the simplest layer 2
forwarding (simple L2), those with layer 2 forwarding and
advanced features such as ACLs (advanced L2), those with
simple layer 3 forwarding capabilities (simple L3), and those
with advanced layer 3 capabilities such as the ability to run
a routing protocol (advanced L3). As can be seen, the prices
range from about $10 to about $110 per port, putting the
cost of a 48-port switch between $494 and $5,250, certainly
within the price levels of what we would call commodity
hardware.

Besides their cheap prices, many of these commodity switches
share the same underlying chipsets. These chipsets are sup-
plied by a small number of manufacturers, which is why
many of the features of the switches are so similar among
vendors. This is actually to our advantage: it would be
possible to purchase kits from the manufactures to enable
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Figure 1: Cost per port for different switches.

the development and deployment of custom software for any
proposed application.

2.1.1 Openflow
Modifying the embedded software system on switch hard-

ware in order to perform custom operations is not for the
faint-hearted, so ideally we would like to rely on switches
with flexible software. Fortunately, Openflow[3] is an exam-
ple of such a platform, with manufacturers like HP, NEC, Ju-
niper and Cisco already producing prototype switches [12].
Openflow switches contain, among other things, a so-called
Flow Table that can be configured by adding entries. These
entries aggregate packets into flows by matching on a num-
ber of L2, L3 and L4 fields and then specify which port on
the switch a particular flow should be sent out on, turning
the switch into a simple yet rather flexible platform.

As mentioned, OpenFlow uses the flow as its basic unit
of control, but is this the correct model for us? Traffic can
be split at different levels, with the packet being the most
common one. Despite giving fine-grained control, process-
ing traffic at the packet level will almost certainly intro-
duce packet reordering, something that we wish to avoid at
all costs. Splitting traffic at the flow level would certainly
prevent this, allowing us to send flows to different systems
without having to worry about costly re-ordering operations.
As a result, Openflow should provide the necessary level of
control needed for our purposes. While at the time of the
writing there were no such switches commercially available,
we speculate that a chipset able to perform advanced L3
forwarding should be powerful enough to comply with the
Openflow specification, giving an indication that the cost of
these switches should also be reasonable.

2.2 Commodity PCs
Even though commodity PCs have been used for a while

to process network traffic, it is only in recent years that
improvements in various technologies have allowed them to
become a powerful network platform. The introduction of
PCI Express, for example, removed the bottleneck presented
by its predecessor, PCI-X[10]. Further, the availability of an
increasing number of CPU cores allows a PC to run several
network processes concurrently while providing high perfor-
mance to each of them (as long as memory hierarchy issues
are carefully considered). Ethernet port density has also in-
creased: quad-port cards are now commonplace, which com-



bined with motherboard interfaces allow a server to have as
many as 15 or more ports.

The combination of these technologies with the drop in
prices have rendered the PC a viable platform for network
processing. Exactly how powerful can a commodity PC be?
In previous work [6] we used a relatively inexpensive Dell
2950 server with 8 processors cores, 12 Ethernet ports, and
standards-compliant IP forwarding paths implemented with
Click Modular Router [9]. With this setup we were able to
ip-forward most packet sizes at line rate, and minimum-sized
packets at a very reasonable 4.9 million packets per second.

2.3 Virtualization and Virtual Routers
Virtualization techniques enable a PC to run multiple

OSes (i.e., multiple instances of the same OS or option-
ally different OSes, depending on the virtualization tech-
nology used) concurrently, giving them access to the un-
derlying hardware while isolating one from the other. In
addition, virtualization makes it relatively easy to migrate
these OSes to another PC, a mechanism that we will exploit
later. Related work in [20] shows how to prevent network
traffic disruption during the migration of virtual routers.

In [5] we tackled basic fairness issues and limitations of a
modern PC for software packet forwarding, exploring alter-
native virtualization technologies and different forwarding
scenarios. From these findings we designed a virtual router

that has highly configurable forwarding planes for advanced
programmability, optimized core scheduling for high perfor-
mance, and hardware multi-queueing for sharing interfaces
between virtual router instances. In [6] we analyzed the vir-
tual router’s performance, showing that virtual router so-
lutions based on current commodity hardware represent a
flexible, practical and inexpensive proposition.

3. FLOWSTREAM ARCHITECTURES
Given the building blocks described above, we can now

discuss in more detail a class of systems architectures for
building in-network processing platforms that we believe
represents a “sweet spot” that nicely balances performance,
scalability and flexibility. We call such platforms “Flow-
stream Architectures”, for reasons that should be clear shortly.
Platforms built according to the flowstream architecture can
be characterized by the following properties:

• The core of the platform consists of an ethernet switch
configured to route flows. A flow is defined in the
OpenFlow sense, as packets that match a (possibly
wildcarded) tuple of source and destination addresses
and ports.

• Streams of data from these flows are then routed to
one of a number of attached commodity server boxes
for additional processing, before being forwarded on to
the final destination.

• Software running on the server boxes can be composed
to provide processing pipelines of modules.

• These modules are virtualized, in the sense that they
can be moved between the servers to balance load and
provide robust service in the presence of failures.

• The switch and servers are managed as a single plat-
form from the point of view of the operators.

Figure 2: Overview of a Flowstream platform.

3.1 Description of a Platform
Figure 2 illustrates how the server boxes (we call them

module hosts to distinguish them from traditional servers)
and flow-based switch are connected together with a con-
troller host to form a flowstream platform. Each host runs
a number of processing modules where all of the actual flow
processing takes place except for basic forwarding which can
be done by the switch. Further, hosts contain a special mod-
ule called a control module, which receives commands from
the platform’s controller to remove, install or migrate mod-
ules, as well as to provide monitoring information about the
host’s load and performance.

There are three main technologies available to us for im-
plementing a module:

• A virtual machine running its own OS and module
application.

• A process running on a virtual machine shared with
other modules.

• A set of kernel forwarding elements instantiated in the
kernel of the device driver domain on one of the module
hosts.

The first of these options is the most general and provides
the best inter-module isolation, whereas the third will pro-
vide the highest performance for traffic that needs to tra-
verse several modules in the same module host. We envis-
age different applications will use different implementation
options, often on the same flowstream platform.

For composing kernel forwarding elements, the Click mod-
ular router [9] provides a suitable set of building blocks. For
example, a module can be composed of a predefined set of
Click elements, and under the control of the operator, cas-
cades of such modules can be plumbed together at run-time.

A Flowstream platform’s second main component is the
Openflow switch, providing the basic connectivity between
module hosts and the network. In addition to this, the
switch contains a flow table is configured from the controller
at runtime, allowing different flows to be directed to any of
the ports on the switch. It is worth pointing out that while



figure 2 shows a single switch, it would be certainly possible
to scale the platform’s port density by including additional
switches.

The final component is the controller. Essentially, this is
the brains of the platform and also its user interface to the
outside world. When the operator makes a request (for in-
stance, running an IDS on flows to a particular web server),
the controller begins by choosing the module host or hosts to
install the processing module(s) on. Such a decision could be
based on the hosts’ current load, information that the con-
troller retrieves periodically from the control modules. Hav-
ing selected a host, the controller then instructs the control
module to install the requested processing module. Once
this is done, the controller configures the switch’s flow ta-
ble so that the corresponding flows are directed to the right
processing module.

With all of these components in place, a flowstream ar-
chitecture provides a powerful platform for flow processing.
The fact that it is built upon commodity yet, as shown in
previous work, high performance hardware should result in
significant cost savings. In addition, a flowstream setup can
be easily expanded and contracted dynamically by adding
or removing module hosts, something that cannot be eas-
ily accomplished on conventional routers or middleboxes.
Further, when required the isolation provided by virtual-
ized module hosts means that several different flow process-
ing operations can be performed simultaneously while min-
imizing negative interactions. The controller can migrate
modules as required to ensure that a processing task does
not significantly degrade the performance of others. Last
but not least, using general-purpose processors and allow-
ing operators to install their own flow processing modules
yields great flexibility. So long as modules have access to
well-defined flow APIs, a Flowstream platform can accom-
modate a wide range of existing and even future network
applications. It is precisely the usage of the platform and
its potential applications that we discuss next.

3.2 Usage Scenarios
In the most basic case, the operator submits a request to a

Flowstream platform’s controller asking it to apply a certain
processing module to a subset of the traffic being forwarded.
The controller then chooses a module host with appropriate
load levels and installs the module on it, then configures the
switch’s flow table. The flow then travels from the switch
to the module for processing, before before being sent back
to the switch and then out onto the network1.

Beyond the simple case, there are two more interesting us-
age scenarios, depending on whether modules act on flows
in parallel or serially. In parallel processing (see figure 3(a)),
flows are load-balanced, pushing different flows to different
module hosts but processing each of them equally. In this
case identical processing modules run on multiple module
hosts (in the figure, hosts A and C). The controller sets up
the switch’s flow table so that a flow gets sent to either of the
module hosts, thus load balancing the traffic; an algorithm
such as the RSS hash [4] can be used to accomplish this. To
avoid reordering, all the packets from one flow must be pro-
cessed by one module host. Flows could also be distributed
unevenly based on the capabilities of the module hosts or

1Note that while so far we have described modules as re-
ceiving flows, processing them and then forwarding them, it
is certainly possible for a module to act as a traffic sink

(a) Parallel processing (load-balancing) scenario.

(b) Serial processing scenario.

Figure 3: Basic platform usage scenarios.

their current load. Parallel modules are useful for quite a
number of CPU-intensive network processing tasks, includ-
ing intrusion detection, SPIT and DoS attack filtering, and
monitoring and deep packet inspection.

In serial processing or pipelining (see figure 3(b)), the op-
erations performed on flows are split across several module
hosts and done one at a time. One example of an application
for this is VPN termination, where one host could be used to
perform the expensive encryption operation before another
takes care of the tunneling. Serial processing is essential
when each packet must be processed first by one module,
then by another. Serial processing would also be useful if
one of the hosts had dedicated hardware to perform an ex-
pensive operation at line rate, or if a module host did not
have enough interfaces to carry out a particular function,
such as acting as a router.

Figure 4: Scenario: offloading to a separate module

host for further processing.

Combinations of serial and parallel are of course possible,
as is heterogeneous parallel processing. In this case different
flows are processed on different modules hosts, but they are
also processed by different modules. For example, traffic
to the web server farm might be processed by server load
balancing modules, whereas traffic to the mail server may



Figure 5: Inclusion of existing hardware

traverse a mail-server blacklist filter.
A more complex usage scenario is flow splitting, whereby

a processing module is used to split a subset of traffic from
a flow aggregate to another module for further processing
(see figure 4). An application that fits rather well with this
mechanism is intrusion detection: for example, module host
A could be used to apply a quick, preliminary filter in order
to separate out suspicious flows. Matching flows would then
be sent to module host B for a more in-depth inspection,
whereas those that do not match are sent back to the switch
for immediate forwarding. It is worth pointing out that for
simple filters, the actual splitting of flows could be done by
the Openflow switch, thus off-loading some of the work from
the module hosts.

Finally, because a flowstream platform consists of loosely-
coupled hardware, it is possible to use it to encapsulate ex-
isting network middleboxes. For example, in figure 5 if a
third party application accelerator box cannot cope with
the full traffic rate, or needs some traffic excluded from its
interference, such a box can be plugged into the flowstream
switch and treated as a black box through which a subset of
the traffic can be directed.

3.3 Module Migration
Flowstream architectures fit firmly into the trend of using

arrays of cheap and potentially unreliable hardware, but pro-
viding robustness in software. To provide such robustness,
we need to be able to migrate modules between hosts, both
to manage changing load and to adapt to failures. All three
of the mechanisms described for implementing modules can
be migrated live between hosts, though with varying costs
for the migration:

• Today’s OS virtualization platforms can support live
VM migration.

• Cluster computing platforms support live process mi-
gration.

• Click kernel forwarding paths can be reconfigured on
the fly to include new elements.

It is perhaps this ability to migrage processing functions
between hardware, while simultaneously re-plumbing the
switch flow table to match, that perhaps best illustrates the
flexibility of flowstream architectures. This flexibility can
even be used to power down underused module hosts during
quiet hours to save on electricity costs.

4. BENEFITS OF CONSOLIDATION.
A flowstream platform consolidates a number of middle-

box systems into a single entity. For this to be worthwhile we
need to gain tangible benefits from the consolidation; ben-
efits that make the whole greater than its parts, otherwise
we are just shifting functions from one system to another.
This consolidation has the following benefits:

• Increased tolerance to failures.

• Reduced equipment and maintance costs.

• The ability to do dynamic reprovisioining.

Increased tolerance of failures can be achieved by hav-
ing spare module hosts to take the place of a module host
that has failed or is perceived to be about to fail. In a stan-
dard middlebox deployment each type of middlebox required
a spare system to be available in case of hardware failure.
In the flowstream architecture a smaller number of spare
systems are required because module hosts are agnositic to
the processing modules being run on them. Provided the
hardware profile of the failed or failing module host is ex-
ceeded by the remaining spare capacity then we can dis-
tribute the processing modules from the failing module host
on the spares. Module migration makes it possible to re-
distribute running modules, or as a last resort, to restart a
module on a new host.
Reduced equipment and maintance costs are achieved
by separating the logical and physical systems and adopt-
ing Google’s model of using mass market commodity boxes.
Expensive downtime is removed by migrating the processing
modules to spare systems and then undertaking maintance
on an offline system.
Dynamic reprovisioning is an outcome of the load ba-
lencing scenario presented in section 3.2. The flowstream
architecture enables us, at a fairly fine granularity, to in-
crease or decrease the capability of any processing module
by varying the allocation of flows and processing resources
with whole systems being shut down during quiet periods
and brought back online when the load increases. New fea-
tures can easily be trialed by splitting or copying a small
portion of the traffic to the new processing module without
interupting the live system.

5. RELATED WORK
In this section, we discuss related work and we position

Flowstream among the very few related systems. [1] explores
the scalability of software routers on general-purpose hard-
ware, concentrating on particular scaling challenges, such as
the per-packet processing capability in relation to the line
rate. The authors eventually propose a clustered software-
router architecture that uses an interconnect of multiple
servers in order to enhance scalability for software routers.
However, this architecture does not support the flow pro-
cessing capabilities of Flowstream2 . At the same time, Flow-
stream does not pose any considerable scalability issues (at
least for the purpose it is designed for), since the platform’s
port density scales well with the addition of more OpenFlow
switches.

2One flow processing module in Flowstream is IP forward-
ing, but this is not its main purpose



SuperCharging PlanetLab [19] advocates the decoupling
of network nodes into a control/application plane running
on commodity harware and specialized network-processor
HW for the forwarding. In contrast, we advocate taking
advantages of clusters of modern commodity hardware.

Pswitches [8] proposes the use of advanced commodity
switches to control the paths of flows in datacenters, and
share expensive middleboxes. Ethane [2] introduces the use
of flow-based switching as a way to control and improve the
security of enterprise network. An Ethane switch is essen-
tially an early Openflow technology. Our platform takes
the flexibility afforded by commodity switches further, by
building complex network processing functionality within
PC clusters.

In [15] the authors propose the combination of a pro-
grammable controler and switches for traffic management,
while our approach considers the combination of commodity
server and switching hardware to implement complex router
applications beyong traffic management.

6. CONCLUSIONS
In this paper we have proposed a new class of system

architectures for in-network processing platforms that has
emerged from the confluence of the commoditization of switch
and x86 server hardware and the arrival of capable open vir-
tualization solutions. We have spelt out the architectural
benefits and the sources of cost savings in such a class of
processing platform. The interconnects for such an architec-
ture are not yet defined, nor are the module APIs required
to control and monitor a system based on this architecture.
Openflow and the current open virtualization solutions are
good starting points for this system but much remains to
be done before a practical realization of this architecture is
achieved with products from multiple vendors.

Overall, the emergence of the new commodity network
hardware we propose is poised to speed up the convergence
and integration of the network and data centers. Indeed,
the software oriented network programmability that emerges
would allow on the fly deployment of (new) network appli-
cations inside clouds of commodity computing. In essence,
flowstream can be considered as taking further the separa-
tion and decoupling of network functionality and network
infrastructure.
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